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HIGHLIGHTS 15 

• Cortical responses to an single talker exhibit a distributed gradient, ranging from sites that are 16 

sensitive to both a talker’s voice and location (dual-feature sensitive sites) to sites that are 17 

sensitive to either voice or location (single-feature sensitive sites).  18 

• Population response patterns of dual-feature sensitive sites encode voice and location features 19 

of the attended talker in multi-talker scenes jointly and with equal precision. 20 

• Despite their sensitivity to a single feature at the level of individual cortical sites, population 21 

response patterns of single-feature sensitive sites also encode location and voice features of a 22 

talker jointly, but with higher precision for the feature they are primarily sensitive to.   23 

• Neural sites which selectively track an attended speech stream concurrently encode the 24 

attended talker’s voice and location features.  25 

• Attention selectively enhances temporal coherence between voice and location selective sites 26 

over time.  27 

• Joint population coding as well as temporal coherence mechanisms underlie distributed multi-28 

dimensional auditory object encoding in auditory cortex.  29 

ABSTRACT (240 words) 30 

Listeners readily extract multi-dimensional auditory objects such as a ‘localized talker’ from complex 31 

acoustic scenes with multiple talkers. Yet, the neural mechanisms underlying simultaneous encoding and 32 
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linking of different sound features – for example, a talker’s voice and location – are poorly understood. 33 

We analyzed invasive intracranial recordings in neurosurgical patients attending to a localized talker in 34 

real-life cocktail party scenarios. We found that sensitivity to an individual talker’s voice and location 35 

features was distributed throughout auditory cortex and that neural sites exhibited a gradient from 36 

sensitivity to a single feature to joint sensitivity to both features. On a population level, cortical response 37 

patterns of both dual-feature sensitive sites but also single-feature sensitive sites revealed simultaneous 38 

encoding of an attended talker’s voice and location features. However, for single-feature sensitive sites, 39 

the representation of the primary feature was more precise.  Further, sites which selective tracked an 40 

attended speech stream concurrently encoded an attended talker’s voice and location features, 41 

indicating that such sites combine selective tracking of an attended auditory object with encoding of 42 

the object’s features. Finally, we found that attending a localized talker selectively enhanced temporal 43 

coherence between single-feature voice sensitive sites and single-feature location sensitive sites, 44 

providing an additional mechanism for linking voice and location in multi-talker scenes. These results 45 

demonstrate that a talker’s voice and location features are linked during multi-dimensional object 46 

formation in naturalistic multi-talker scenes by joint population coding as well as by temporal coherence 47 

between neural sites.  48 

SIGNIFICANCE STATEMENT 49 

Listeners effortlessly extract auditory objects from complex acoustic scenes consisting of multiple sound 50 

sources in naturalistic, spatial sound scenes. Yet, how the brain links different sound features to form a 51 

multi-dimensional auditory object is poorly understood. We investigated how neural responses encode 52 

and integrate an attended talker’s voice and location features in spatial multi-talker sound scenes to 53 

elucidate which neural mechanisms underlie simultaneous encoding and linking of different auditory 54 

features. Our results show that joint population coding as well as temporal coherence mechanisms 55 

contribute to distributed multi-dimensional auditory object encoding. These findings shed new light on 56 

cortical functional specialization and multidimensional auditory object formation in complex, naturalistic 57 

listening scenes.  58 

INTRODUCTION  59 

In everyday life, listeners rapidly and effortlessly parse complex acoustic scenes with multiple sound 60 

sources into its individual constituents. This process of auditory scene analysis (ASA1) is based on the 61 

segregation and subsequent grouping of features of temporally overlapping sound sources, resulting in 62 

the formation of coherent auditory objects2. Sound features contributing to auditory object formation 63 

include voice features related to object identity (e.g., pitch or timbre) and location features (e.g., 64 
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interaural time differences, location cues)3–5. However, the neural basis for multi-dimensional auditory 65 

object formation in complex, naturalistic listening scenes is poorly understood. 66 

One unresolved question is how cortical representations of individual sound features are linked by the 67 

brain to form a multi-dimensional auditory object. If voice and location features are encoded 68 

independently in two separate, functionally specialized and hierarchical processing streams as posited 69 

by the prevailing dual-stream framework6,7, it is not clear how these features are subsequently integrated 70 

to form a multi-dimensional auditory object. In contrast, recent studies using an active task design 71 

indicate that sound feature encoding may be distributed across auditory cortex rather than taking place 72 

in dedicated, functionally specialized anatomical regions as posited by the dual-stream theory. For 73 

example, studies in cats8 and humans9 showed that spatial sensitivity in primary auditory cortex (PAC) 74 

sharpens during goal-directed sound localization, suggesting that regions that are not considered part 75 

of the location pathway (i.e. PAC) may be recruited flexibly for spatial processing based on behavioral 76 

goals. Additionally, while speech processing has been attributed mostly to posterior STG10,11, a recent 77 

study demonstrated that speech processing is instead distributed across auditory cortex12. Such findings 78 

indicate that sound (feature) encoding may be more distributed than posited by the hierarchical dual-79 

stream framework.  80 

Additionally, it is not understood what neural mechanisms integrate cortical representations of individual 81 

sound features (e.g. spatial and non-spatial features). One hypothesis is that neuronal populations are 82 

sensitive to specific combinations of features and thereby encode multiple dimensions of an auditory 83 

object. Prior studies confirmed that some cortical sites are sensitive to multiple sound features 84 

simultaneously (e.g. in ferrets13, for a review14). However, because most prior measurements were 85 

performed with single sound sources, it is not known whether these cortical sites maintain their multi-86 

dimensional sensitivity when presented with complex acoustic scenes comprising multiple, interfering 87 

sound sources. An alternative hypothesis states that auditory streams (pertaining to auditory objects) 88 

are formed through temporal coherence, i.e., response synchronization between neural populations that 89 

are sensitive to specific sound features15. Neural measurements in animals16,17 and humans18 90 

demonstrate that temporal coherence is a plausible mechanism for auditory feature binding and 91 

segregation. It remains to be evaluated whether temporal coherence also underlies linking of voice and 92 

location features in human auditory cortex in naturalistic listening scenes.  93 

Finally, although it is well known that auditory attention modulates the neural representation of spatial 94 

and non-spatial features19,20 as well as auditory object formation21,22, it is not known how attention 95 

modulates integrated encoding of spatial and non-spatial features in complex, naturalistic sound scenes. 96 

Moreover, it remains an open debate2 whether auditory objects form pre-attentively23 or whether 97 

attention is necessary for auditory object formation15.  98 
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Here, we investigated cortical multi-dimensional auditory object formation with stereotactic 99 

electroencephalography (sEEG) recordings in neurosurgical patients. We measured neural activity in 100 

response to real-world sound scenes consisting of a single localized talker or two spatially separated 101 

talkers. The unique spatiotemporal resolution of neurophysiological recordings enabled us to map 102 

feature encoding and multi-dimensional object formation across auditory cortex. We found that active 103 

listening to complex, naturalistic scenes gives rise to distributed but joint voice and location encoding 104 

in single- as well as in multi-talker scenes. Furthermore, our results revealed that response patterns of 105 

distinct neural populations jointly encoded an attended talker’s voice and location features. Finally, we  106 

show that attending to a localized talker in multi-talker scenes selectively enhanced temporal coherence 107 

between voice and location sensitive sites. In sum, these data demonstrate that multiple neural 108 

mechanisms contribute to linking an attended talker’s voice and location in multi-talker scenes. .  109 

RESULTS 110 

We analyzed neural measurements in seven neurosurgical patients recorded with intracranial depth 111 

electrodes (stereoelectroencephalography, sEEG; Methods). Participants listened to English speech 112 

utterances consisting of one or two spatialized talkers. In single-talker scenes, either a male or female 113 

talker was present at a location of -45° or +45°. In two-talker scenes, a male and female talker were 114 

simultaneously present, one at -45° and the other at +45° (Figure 1 A). Trials had an average duration of 115 

5 s and the location of the talkers changed at random after each trial. The total duration of each condition 116 

(i.e., single-talker speech and multi-talker speech) was 8 minutes. For the single-talker condition, speech 117 

was paused at random intervals between trials and the participant was asked to repeat the last sentence 118 

as well as the location of the talker. For the multi-talker condition, participants were instructed at the 119 

start of a block to attend to a specific talker (i.e. ‘attend male’ or ‘attend female’). At random moments 120 

in between trials, participants were asked to report the location of the attended talker and the last 121 

sentence uttered by the attended talker. Participants successfully performed the behavioral task (see 24 122 

for a detailed analysis of the behavioral results).  123 

Cortical sensitivity to a talker’s voice and location features 124 

We observed significant neural population responses to speech in the high gamma envelope of 147 125 

cortical sites in auditory cortex (paired samples t-test of responses to speech versus silence, p < 0.05, 126 

FDR corrected, q < 0.05; Figure 1 D). These speech responsive sites were located in Heschl’s gyrus (HG, 127 

6 left hemisphere, 32 right hemisphere), planum temporale (PT, 11 left hemisphere, 24 right hemisphere) 128 

and superior temporal gyrus (STG, 25 left hemisphere, 49 right hemisphere).  129 

We characterized response properties for voice and location features by examining the responses to the 130 

single talker scenes for each cortical site. To assess to what extent a site exhibited sensitivity to voice, to 131 
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location, or to both, we contrasted the responses to one class of a feature (e.g., the male voice) to the 132 

responses to the other class of the feature (e.g., the female voice). For all sites, we extracted the mean 133 

response for each trial as the mean from 0.5 s post sound onset to 1.5 s post sound onset (that is, 134 

excluding the onset response). Figure 1 B shows example neural responses of three sites: One site 135 

sensitive to voice features (top panels), one site sensitive to location features (middle panels) and one 136 

site sensitive to both voice and location features (bottom panels). Figure 1 C shows the resulting 137 

response distributions for the sites in Figure 1 B. To test for sensitivity to voice features, we computed 138 

the effect size (Cohen’s d21) for the difference between the mean responses to all male and female trials, 139 

irrespective of the location of the talker (50 trials each). To test for sensitivity to location features, we 140 

computed Cohen’s d for the difference between the mean responses to all trials in which the talker was 141 

at the right and all trials in which the talker was at the left, irrespective of the talker’s voice (50 trials 142 

each). Figure 1 D depicts voice and location sensitivity (Cohen’s d) on the cortical surface. There was no 143 

overall relationship between sensitivity strength for a single talker’s voice and location features (|Cohen’s 144 

d|, r = 0.037, p = 0.66).  145 

Statistical testing confirmed that 47 sites were significantly sensitive to voice features only (paired 146 

samples t-tests, p < 0.05, FDR corrected) and 12 sites were significantly sensitive to location features 147 

only (paired samples t-tests, p < 0.05, FDR corrected). In agreement with prior results (e.g. 24,25), most 148 

sites which were sensitive to location, preferred locations in the contralateral hemifield. Further, 23 sites 149 

were sensitive to both location and voice features (p < 0.05 for both t-tests). While multi-dimensional 150 

sensitivity has only been demonstrated for combinations of non-spatial features in humans, these results 151 

confirm prior work in animals26 which showed that some neuronal populations in auditory cortex are 152 

sensitive for both spatial and non-spatial features13. In sum, cortical responses reveal a gradient from 153 

single-feature voice or location sensitive sites to dual-feature voice and location sensitive sites.  154 
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Figure 1. Experiment design and single-talker cortical sensitivity for location and voice features. 

(A) Two examples of single-talker scenes (left panels) and two examples of spatial multi-talker scenes 

(right panels). Gray arrows indicate the attended talker. (B) Example neural responses from three sites: 

a single-feature voice sensitive site (S1, higher responses to male talker than to female talker 

irrespective of location), a single-feature location sensitive site (S2, higher responses to a talker on the 

left than a talker on the right, irrespective of the talker), and a dual-feature sensitive site (S3, higher 

responses to a male talker than to a female talker and higher responses to a talker on the right than 

a talker on the left). Black triangle indicates sound onset. Shaded green area depicts the time window 

for calculating voice and location sensitivity (i.e., 500 – 1,500 ms post sound onset). (C) Distribution of 

average trial responses to the male and female talker for three example sites (same as in B). Dashed 

line indicates the median of each distribution. Panels on the right depict the mean and standard error 

of the mean for each distribution. The sensitivity index (SI) is the effect size of the difference in 

response to two locations (SI loc) or the difference in response to two talkers (SI voice). (D) Top panel: 

Speech responsiveness of all electrodes in AC. Color saturation reflects the t-value for the contrast 

speech versus silence (see Methods). Electrodes that did not exhibit a significant response to speech 

are indicated by a slanted black line. Lower panels: Sensitivity for a single talker’s location (left panel) 
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and voice features (right panel) plotted on the cortical surface for all speech responsive sites. Color 

indicates Cohen’s d (range [-1,1]). 

 

Spectrotemporal tuning properties explain sensitivity to a talker’s voice and location features 155 

Prior work showed that spectrotemporal tuning properties explain preferential responses to a talker’s 156 

voice21,27. We examined whether we observe a similar relationship between spectrotemporal tuning and 157 

sensitivity to a talker’s voice features in the present dataset and, additionally, we examine to what extent 158 

spectrotemporal tuning properties can also explain sensitivity to a talker’s location features. We 159 

characterize the spectrotemporal tuning properties of each speech responsive site by estimating a 160 

spectrotemporal receptive field (STRF) from the responses to single-talker stimuli. We estimated STRFs 161 

using a five-fold cross-validation procedure, leaving out 20 trials and fitting the STRF on the remaining 162 

80 trials. We used the left-out 20 trials to estimate the goodness of fit, calculating the correlation 163 

between these left-out neural responses and neural responses predicted by the fitted STRFs (Methods). 164 

Next, we examined to what extent STRF shape explained sensitivity to talker’s voice and location features 165 

for all cortical sites with a well-fitted STRF (correlation r > 0.2, n = 93).  166 

To analyze the relationship between STRF shape and sensitivity to a talker’s voice features, we divided 167 

the group of sites sensitive to a talker’s voice (n = 47, Figure 1) into sites responding maximally to the 168 

male talker and sites responding maximally to the female talker. In line with prior work21, the average 169 

STRF of sites responding preferentially to the female talker exhibited tuning properties corresponding 170 

to the spectral profile of the female talker, while the average STRF across sites responding preferentially 171 

to the ‘male’ talker exhibited tuning properties corresponding to the spectral profile of the male talker. 172 

That is, Figure 2 A shows that the average STRF of ‘male’-preferring sites exhibited an excitatory region 173 

at low frequencies between 50 Hz and 100 HZ, overlapping with F0 of the male talker (65 Hz).  In contrast, 174 

the average STRF of ‘female’-preferring sites exhibited an excitatory region between 160 Hz and 200 Hz, 175 

overlapping with F0 of the female talker (175 Hz).  176 

To quantify this relationship between spectral tuning properties and sensitivity to a talker’s voice 177 

features, we extracted the spectral receptive fields (SRFs) of sites responding maximally to the male talker 178 

and sites responding maximally to the female talker. The SRF corresponds to the first component of a 179 

principal component analysis (PCA) of the STRF along the spectral dimension21. The difference in the 180 

SRFs of these two groups (i.e., responding preferentially to the female or male voice) was strongly 181 

correlated to the difference between the spectral profile of the male and female talker, indicating that 182 

the preference of voice sensitive sites for the male or female talker was driven by the correspondence 183 

between the spectral response profile of the site and the acoustic profile of the talker (r = 0.85, p = 7.1E-184 

15; Methods; Fig. 2 B). Further, mapping the SRFs to sensitivity for a talker’s voice using ridge regression 185 
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(Methods), showed that SRFs predicted sensitivity for a talker’s voice well. That is, there was a high 186 

correlation between predicted sensitivity and observed sensitivity (r = 0.932, p = 5.9E=17; Fig. 2 C). These 187 

findings confirm that sensitivity to a talker’s voice is driven by the spectral tuning properties of cortical 188 

sites21.  189 

We then repeated the STRF analysis to assess the relationship between STRF shape and sensitivity to a 190 

talker’s location features. First, we computed the average STRF across sites that are sensitive to a talker’s 191 

location (n = 12, Figure 1) and across sites that were not sensitive to a talker’s location (and not sensitive 192 

to a talker’s voice either, n = 65). Figure 2 D shows that sites which were sensitive to a talker’s location 193 

had an excitatory STRF region for frequencies above 1.5 kHz which was reduced in sites which were not 194 

sensitive to a talker’s location. In contrast, sites which were sensitive to a talker’s location responded 195 

more weakly to frequencies between 0.5 – 1.5 kHz. No difference in STRF properties was observed for 196 

frequencies below 0.5 kHz.    197 

As expected, extracting and comparing the SRFs of the two groups (i.e., location-sensitive versus not 198 

location-sensitive) showed that the difference in SRFs was not correlated to the difference between the 199 

spectral profile of the male and female talker (r = 0.17, p = 0.23; Methods; Fig. 2 D). However, mapping 200 

SRFs to sensitivity to a talker’s location features (Methods), demonstrated that SRFs predicted such 201 

location-sensitivity well: There was a high correlation between predicted and observed sensitivity (r = 202 

0.932, p = 5.9E=17; Fig. 2 C). These findings indicate that sites which are sensitive to a talker’s location 203 

respond more strongly to frequencies with robust interaural level difference (ILD) cues for sound 204 

localization28, while responding less strongly to frequencies in which binaural disparity cues such as ILDs 205 

and interaural time differences (ITDs) are less reliable29. Further, these results indicate that sensitivity to 206 

a talker’s location is not related to tuning to low frequencies (i.e., < 0.5 kHz). Taken together, these 207 

findings confirm previous work demonstrating that spectrotemporal tuning explains tuning to a talker’s 208 

voice21,27 and extend this by showing that spectrotemporal tuning also explains tuning to a talker’s 209 

location.   210 
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Figure 2. Spectrotemporal tuning characteristics explain sensitivity to a talker’s voice and to a 

talker’s location. (A) Spectrotemporal tuning properties related to voice sensitivity. Form left to right: 

Average STRF for sites responding maximally to the male talker, average STRF for sites responding 

maximally to the female talker and the difference (STRF male – STRF female). (B) Comparing spectral 

tuning properties to the acoustics of the male and female talker. Left panel: Average spectral receptive 

field of sites responding maximally to a female talker (blue). Right panel: The correlation between the 

difference SRF (SRF male – SRF female) and the difference in the acoustics of the male and female 

talker. (C) Predicting voice sensitivity from the difference SRF (Cohen’s d). (D) Spectrotemporal tuning 

properties related to location sensitivity. From left to right: Average STRF for location sensitive sites, 

average STRF for sites that were not sensitive to location and the difference (STRF sensitive – not 

sensitive). (E) Comparing spectral tuning properties to location sensitivity. Left panel: Average spectral 

receptive field of sites sensitive to location features (red) and for sites not sensitive to location features 

(blue). Right panel: No correlation between the difference SRF (SRF not location sensitive – SRF 

location sensitive) and the difference in the acoustics of the male and female talker. (F) Predicting 

location sensitivity (|Cohen’s d|) from the difference SRF. 

 

Sensitivity to a talker’s voice and location across the cortical hierarchy 211 

To investigate to what extent sensitivity to a talker’s voice and location can be related to cortical 212 

processing stages, we investigated how sensitivity to a talker’s features was distributed across auditory 213 

cortex. While several studies linked delineated anatomical regions to hierarchical processing stages (for 214 

example, HG is considered primary auditory cortex and PT and STG higher-order auditory regions30), 215 

other work investigating neural response latencies and response properties showed that a single 216 

anatomical region may contain different auditory processing stages (e.g. 12,31). That is, as response 217 
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latency roughly corresponds to the number of synapses away from the periphery it is considered as an 218 

indication of the processing stage of a neural site. Here, we therefore assessed the distribution of feature 219 

sensitivity both within cortical auditory regions and as a function of response latency. We calculated 220 

response latency as the peak along the temporal dimension of the STRF (for sites with a well-fitted STRF, 221 

r > 0.2, n = 93; Methods). 222 

Figure 3 A shows the regional distributions of Cohen’s d for a talker’s voice. Comparing the distributions 223 

showed that sensitivity to a talker’s voice was stronger in HG than in STG (|Cohen’s d|, Kruskal-Wallis H 224 

test, 𝜒2(2) = 14.6, p = 0.0007, Figure 3 A). Further, there was a negative correlation between sensitivity 225 

to a talker’s voice and response latency (r = -0.526, p = 1.3E-7; Figure 3 B). These findings confirm prior 226 

reports of a decrease in sensitivity to a talker’s voice along the cortical auditory processing hierarchy21. 227 

In contrast, although we observed a trend towards regional differences in the distribution of Cohen’s d 228 

for a talker’s location (|Cohen’s d|, Kruskal-Wallis H test, 𝜒2(2) = 5.45, p = 0.07; Figure 3 A), this trend 229 

failed to reach significance. Moreover, we observed no correlation between sensitivity to a talker’s 230 

location and response latency (r = -0.146, p = 0.16; Figure 3 B). While the lack of regional differences 231 

may be a consequence of the relatively low anatomical sampling density, together the regional and 232 

response latency results indicate that sensitivity is consistent across low- and high-level processing 233 

stages during active listening. These findings confirm recent work9,24, but contrast the predictions of the 234 

dual-stream framework which posits that PT is functionally specialized for spatial processing6,7,32.    235 

 

Figure 3. Sensitivity to a single talker’s voice and location across the cortical hierarchy (A) 

Scatterplot of voice sensitivity (x-axis) and location sensitivity (y-axis). Each symbol represents an 

individual site. Bar graphs depict corresponding marginal distributions for voice sensitivity (left) and 

location sensitivity (right). (B) Correlation between single-talker response latency and feature 

sensitivity (left panel: voice; right panel: location). Each circle depicts a site. Solid lines depict the 

correlation; shaded areas depict the 95% confidence interval. Asterisks indicate significance: *** = p 

< 0.001. 

 

 236 
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Attentional modulation of neural responses to a talker’s voice and location in multi-talker scenes 237 

We showed that cortical sites exhibit varying degrees of sensitivity for a single talker’s location and voice. 238 

Motivated by prior findings of attentional modulation of neural responses to a talker’s voice and 239 

location21,24, we examined to what degree we observed such local attentional modulations in multi-talker 240 

scenes in our data. Further, we characterized how attentional modulation by a talker’s voice relates to 241 

attention modulation by a talker’s location. Specifically, we quantified to what extent attending to a 242 

talker’s voice and location in multi-talker scenes modulated the response gain of individual cortical sites 243 

similar to our quantification of sensitivity to a single talker’s voice and location features. Specifically, we 244 

calculated the effect size Cohen’s d for the difference in mean response to the trials for each attentional 245 

condition. As before, we calculated the mean response for each trial from 0.5 s post sound onset to 1.5 246 

s post sound onset (excluding the onset response).  247 

In agreement with prior studies21,24, attending a localized talker evoked weak response gain modulations 248 

across speech responsive sites both by the attended talker’s voice and by the attended talker’s location. 249 

Figure 4 A shows that attentional modulation of response gain was smaller than modulation by a single 250 

talker’s voice or location, that is, single-talker sensitivity (paired samples t-test of |Cohen’s d|; voice: 251 

t(146) = 9.65, p = 2.38E-17; location: t(146) = 6.68, p = 4.64E-10). In agreement with this, statistical 252 

testing did not identify neural sites of which the response gain was modulated significantly by attention 253 

to the talker’s voice (paired samples t-tests, p > 0.05), the talker’s location (paired samples t-tests, p > 254 

0.05), or jointly (p >0.05). Further, Figure 4 B shows that only few sites were jointly modulated by an 255 

attended talker’s voice and location in multi-talker scenes. Specifically, only few electrodes were close 256 

to the diagonal and exhibited attentional response gain modulation for both voice and location 257 

(|Cohen’s d| > .1). Crucially, as single-source sensitivity to a specific sound feature (e.g. pitch, location) is 258 

generally considered an indication of functionally specialized processing2,32, the lack of corresponding, 259 

dedicated attentional modulations of response gains raises the question what the role is of these sites 260 

in the encoding of an attended sound source in scenes with multiple sound sources. 261 

Decoding a localized talker from population activity patterns in multi-talker scenes 262 

To elucidate the relationship between local encoding properties and population encoding properties, 263 

we examined whether a localized talker can be decoded from population response patterns. Specifically, 264 

we used a linear decoding approach to assess to what extent a localized talker can be decoded from 265 

population responses in single talker scenes and to what extent an attended localized talker can be 266 

decoded from population responses in multi-talker scenes. To decode a localized talker in single-talker 267 

scenes, we trained a four-class regularized least-squares (RLS22,33) classifier on the response patterns in 268 

single-talker scenes using a leave-two-trials-out cross-validation procedure (corresponding to 25 folds). 269 
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To decode an attended localized talker, we trained an identical four-class RLS classifier on the response 270 

patterns in multi-talker scenes using a similar cross-validation procedure. We assessed decoding 271 

accuracy by predicting the talker’s voice and location from the response patterns of the left-out trials of 272 

each fold (Methods).  273 

As expected, Figure 4 C shows that a single localized talker could be accurately decoded from the entire 274 

population of speech responsive sites (n = 147; average accuracy [standard error of the mean; SEM] = 275 

93.0 % [2.29], p = 0, FDR corrected). Similarly, the attended localized talker was decoded accurately from 276 

the entire population of speech responsive sites (mean accuracy [SEM] = 63.0 % [5.80], p = 0). Marginal 277 

decoding accuracies for the talker’s voice and location show that both features were decoded with equal 278 

precision in single-talker scenes (Figure 4 D, mean marginal accuracy: voice [SEM] = 97.0 % [1.66], p = 279 

0; location [SEM] = 96.0 % [1.87], p = 0; paired samples t-test, t(24) = 0.37, p = 0.72 ) as well as in multi-280 

talker scenes (Figure 3D, mean accuracy voice [SEM] = 82.0 % [4.68], p = 0; average accuracy location 281 

[SEM] = 74.0 % [3.95], p = 0; t(24) = 1.69, p = 0.14). These findings show that although attentional 282 

modulation of local response gain by the attended talker’s voice and location in multi-talker scenes was 283 

weak (Figure 4 A), response patterns across the entire population of speech responsive sites the attended 284 

localized talker with high fidelity.  285 

Next, we examined how sites which exhibit single-feature sensitivity for a talker’s voice or location 286 

features in their local responses (n = 47 and n = 12, Figure 1) encode a localized talker in population 287 

response patterns. We therefore trained the RLS classifier on the population responses of these neural 288 

sites with the same procedure described above. Note that although the latter population is relatively 289 

small, we chose to use this stringent selection to ensure that the population did not incorporate sites 290 

that were also to some extent sensitive to a talker’s voice. Figure 4 C shows that the classifier successfully 291 

decoded a localized talker in single-talker scenes from voice sensitive sites (mean accuracy [SEM] = 65.0 292 

% [4.33], p = 0) as well as from location sensitive sites (mean accuracy 61.0 % [4.10], p = 0). Further, the 293 

marginal accuracies in Figure 4 D show that the classifier decoded the talker’s voice more accurately 294 

from population responses of voice sensitive electrodes than the talker’s location (mean marginal 295 

accuracy: voice [SEM] = 99.0 % [1.00], p = 0; location [SEM] = 65.0 % [4.33], p = 0.0098; paired samples 296 

t-test, t(24) = 7.49, p  = 3.93E-7). Conversely, decoding accuracy was higher for the talker’s location than 297 

for the talker’s voice when the classifier operated on population responses of location sensitive sites 298 

(voice [SEM] = 65.0 % [4.33], p = 0.02; location [SEM] = 91.0 % [2.45], p = 0.0024; t(24) = 5.32, p = 3.74E-299 

5). These findings show that single-feature sensitive sites nevertheless encode coarse information about 300 

other feature dimensions of an individual talker in their population responses. 301 

Furthermore, in multi-talker scenes, the classifier decoded the attended localized talker above chance 302 

level from population responses of voice sensitive sites (Figure 4 C, mean accuracy [SEM] = 55.0 % [5.59], 303 
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p = 0) as well as from population responses of location sensitive sites (Figure 4 C, mean accuracy [SEM] 304 

= 36.0 % [3.84], p = 0.026). However, while both the attended talker’s location and voice were decoded 305 

above chance level from population responses of voice sensitive sites (mean marginal accuracy: voice 306 

[SEM] = 80.0 % [5.40], p = 0 ; location [SEM] = 63.0 % [4.59], p = 0.023), only the attended talker’s 307 

location was decoded accurately from population responses of location sensitive sites. Specifically, the 308 

decoding accuracy for the attended talker’s voice just failed to reach statistical significance, which may 309 

be a consequence of the small number of sites in this group (mean marginal accuracy: voice [SEM] = 310 

54.0 % [2.77], p = 0.079; location [SEM] = 67.0 % [3.45], p = 0.021). For both voice and location sensitive 311 

sites, the preferred feature was decoded significantly better than the other feature (voice: t(24) = 2.72, p 312 

= 0.024; location: t(24) = 2.98, p = 0.024). These findings indicate that populations which exhibit local 313 

properties of functional specialization in response to single-source sound scenes may nonetheless 314 

encode (coarse) information about multiple dimensions of the auditory object. Future work including 315 

more fine-grained sampling of multiple feature dimensions (e.g., more talkers and more voices) is 316 

required to establish the resolution with which population responses of single-feature sensitive sites 317 

encode other feature dimensions.   318 

Finally, we showed previously that some neural sites were sensitive both for a talker’s voice and location 319 

(Figure 1, n = 23). We examined to what extent population responses of these dual-feature sensitive 320 

sites also jointly encode a talker’s voice and location in single- and in multi-talker conditions. That is, 321 

while prior work in animals showed that auditory cortex contains sites which are sensitive to spatial as 322 

well as non-spatial sound features13, work in humans focused only on multi-dimensional sensitivity for 323 

non-spatial features (e.g. 26). Moreover, as all prior studies were conducted with single-source scenes, it 324 

is not clear to what extent multi-dimensional sensitivity is maintained in multi-talker sites. Here, Figure 325 

4 C shows that the localized talker was decoded accurately from population responses of dual-feature 326 

sensitive sites in single-talker scenes (mean accuracy [SEM] = 91.0 % [3.50], p = 0). The attended localized 327 

talker was also decoded accurately from population responses in multi-talker scenes (mean accuracy 328 

[SEM] = 47.0 % [3.63], p = 0). Importantly, Figure 4 D shows that dual-feature sensitive encoded the 329 

talker’s voice and location with equal precision, both in single-talker (mean marginal accuracy: voice 330 

[SEM] = 96.0 % [1.87], p = 0; location [SEM] = 94.0 % [2.61], p = 0; paired samples t-test: t(24) = 0.81, p 331 

= 0.57) and in multi-talker scenes (mean marginal accuracy: voice [SEM] = 63.0 % [3.57], p = 0.006; 332 

location [SEM] = 69.0 % [3.62], p = 0; paired samples t-test: t(24) = 1.1, p = 0.28). In sum, we show that 333 

population responses of dual-feature sensitive sites encode both spatial and non-spatial features of an 334 

attended talker in multi-talker scenes. This suggests that such dual-feature sensitive sites contribute to 335 

the encoding of multiple dimensions of an auditory object.  336 
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Figure 4. Attentional gain modulation and the representation of a localized talker in single- and 

multi-talker scenes. (A) Relationship between attentional gain modulation and single-talker 

sensitivity. Left panel: Gain modulation by attending to a talker’s voice in multi-talker scenes (y-axis) 

versus single-talker voice sensitivity (x-axis). Right panel: Gain modulation by attending a talker’s 

location in multi-talker scenes (y-axis) versus single-talker location sensitivity (x-axis). (B) Scatterplot 

of gain modulation by an attended talker’s voice (x-axis, |Cohen’s d|) and by an attended talker’s 

location (y-axis, |Cohen’s d|). (C) Decoding a localized talker from response patterns in single-talker 

scenes (filled bars) and decoding an attended localized talker in multi-talker scenes (open bars). 

Horizontal lines depict chance level. Asterisks indicate significance: *** = p < 0.001. (D) Marginal 

decoding accuracies for a talker’s voice and location. Dashed line depicts chance level, asterisks 

indicate significance: * = p < 0.05; ** = p < 0.01; *** = p < 0.001.  

 

Sites selectively tracking an attended speech stream simultaneously encode an attended talker’s 337 

voice and location features 338 

In the preceding sections, we examined to what extent single-feature sensitive and dual-feature sensitive 339 

sites encode an attended talker’s voice and location features in multi-talker scenes. However, prior work 340 

showed that auditory cortex also contains neural sites which are not strongly sensitive to a single talker’s 341 

features, but which nonetheless play a crucial role in auditory object formation by selectively tracking 342 

the attended speech stream in multi-talker listening scenes21,22,24,34. As the relationship between such 343 

speech stream tracking and encoding of the attended talker’s features is not known, we analyzed the 344 

measured neural responses to multi-talker scenes to evaluate to what degree such neural sites which 345 

selectively track sites additionally encode the attended talker’s voice and location features.   346 
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For each site, we first quantified selective tracking of the attended speech stream by calculating to what 347 

extent a site’s responses in spatial multi-talker scenes were modulated by attention to reflect the 348 

response to the attended localized talker in single talker scenes. We define the tracking index (TI) for 349 

each site similar to the definition in 21: 350 

𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 = 𝑐𝑜𝑟𝑟(𝑎𝑡𝑡𝑀 , 𝑠𝑖𝑛𝑔𝑙𝑒𝑀) − 𝑐𝑜𝑟𝑟(𝑎𝑡𝑡𝑀, 𝑠𝑖𝑛𝑔𝑙𝑒𝐹) + 𝑐𝑜𝑟𝑟(𝑎𝑡𝑡𝐹 , 𝑠𝑖𝑛𝑔𝑙𝑒𝐹)351 

− 𝑐𝑜𝑟𝑟(𝑎𝑡𝑡𝐹 , 𝑠𝑖𝑛𝑔𝑙𝑒𝑀) 352 

Here, 𝑀refers to the male talker and 𝐹 to the female talker. Further, 𝑐𝑜𝑟𝑟(𝑎𝑡𝑡, 𝑠𝑖𝑛𝑔𝑙𝑒) corresponds to the 353 

correlation between the single-talker response and the multi-talker response for the same trial calculated 354 

over the entire duration over the trial (see example in Figure 5 A).   355 

Next, to gain more insight into the encoding properties of sites which selectively track an attended 356 

speech stream, we examined to what extent TI is explained by attentional modulation of STRF 357 

properties35,36. We quantified such attentional modulation of STRF properties by estimating for each 358 

cortical site two STRFs from the responses to multi-talker scenes: one for the ‘attend male talker’ 359 

condition and one for the ‘attend female talker’ condition. To relate attention-induced spectrotemporal 360 

plasticity to the encoding of a talker’s spectral characteristics, we extracted the spectral receptive field 361 

(SRF) from each STRF as the first principal component of a PCA (only for cortical sites with a robust STRF 362 

as estimated from single-talker responses, r > 0.2, n = 93) and compared these to the spectral profile of 363 

the male and female talker. Specifically, we computed the difference in SRF for the two attention 364 

conditions (i.e., attend female – attend male) and correlated this difference SRF to the acoustic difference 365 

spectrum between the male and female talker (see examples in Figure 5 B, C). If a site’s spectral tuning 366 

properties are modulated by attention towards the attended talker’s spectral profile, we expect a high 367 

correlation between the difference SRF and the acoustic difference spectrum (Fig. 5 C). That is, we expect 368 

these sites to resemble a contrast matched filter which facilitates figure-ground segregation by 369 

enhancing the attended target (e.g., the female talker) and filtering out the background (e.g., the male 370 

talker)37. Therefore, we quantified the strength of attentional modulation of STRF properties by 371 

calculating a contrast matched filter (CMF) index, which is the correlation between the attention-driven 372 

difference in the SRFs and the acoustic difference spectrum for the female and male talker (Figure 5 C). 373 

As expected24, CMF explains TI well (r = 0.577, p = 1.4E-9, Fig. 5 D). This indicates that sites whose STRF 374 

properties are strongly modulated by attention tend to be sites which selectively track the attended 375 

speech stream. In contrast, TI is not correlated to single talker encoding properties (voice sensitivity: r = 376 

0.11, p = 0.24; location sensitivity: r = 0.12,  p = 0.24) or multi-talker attentional response gain 377 

modulation (attended talker’s voice: r = 0.06, p = 0.48; attended talker’s location: r = -0.13,  p =0.24). 378 

Thus, the encoding properties of sites which selectively track an attended speech stream are 379 
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characterized by attentional modulation of STRF properties rather than by single-talker sensitivity or 380 

multi-talker attentional response gain modulation.  381 

Further, to examine whether the population responses of sites which selectively track the attended 382 

speech stream also encode the attended talker’s voice and location, we trained the four-class classifier 383 

on their population response patterns in multi-talker scenes (i.e, for sites with TI > 0.1, n = 33). The 384 

classifier accurately decoded the attended localized talker from these population response patterns 385 

(average accuracy [SEM] = 51.0 % [5.10], p = 0; Figure 5 E). Furthermore, the classifier decoded the 386 

attended talker’s voice and location with equal precision (Figure 5 E; marginal accuracies: voice [SEM] = 387 

72.0 % [3.63], p = 0; location [SEM] = 70.0 % [4.56], p = 0; paired samples t-test, t(24) = 0.40, p = 0.69). 388 

In sum, population responses of sites which selectively tracked the attended speech stream also encoded 389 

the attended talker’s voice and location. This finding indicates that the population responses of these 390 

sites play a role in combining selective tracking of an attended auditory object (here, speech stream) 391 

with encoding of the features of that object (here, the talker’s voice and location).  392 

 

Figure 5. Selective speech tracking and encoding of the attended talker’s voice and location.  

(A) High-gamma responses of an example site exhibiting selective tracking of the attended talker. 

Solid lines depict response in single-talker scene, dotted lines depict response in multi-talker scene. 

(B) STRFs of an example cortical site exhibiting contrast matched filtering. Left panel: STRF in the 

‘attend male’ condition. Middle panel: STRF in the ‘attend female’ condition. Right panel: Difference 

(STRF attend male – STRF attend female). (C) Comparing spectral tuning properties in the two 

attention conditions to the acoustics of the male and female talker. Left panel: Spectral receptive fields 
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for the ‘attend male’ condition (red) and for the ‘attend female’ condition (blue). Right panel: The 

correlation between the difference SRF (SRF attend male – SRF attend female) and the difference in 

the acoustics of the male and female (D) Correlation between CMF (x-axis) and Tracking Index (y-axis). 

Circles represent cortical sites. (E) Left panel: Decoding an attended localized talker from population 

responses in multi-talker scenes. Horizontal line depicts chance level. Asterisks indicate significance: 

*** = p < 0.001. Right panel: Marginal decoding accuracies for a talker’s voice and location. Dashed 

line depicts chance level, asterisks indicate significance: * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 

 

Attention to a localized talker enhances temporal coherence between voice-sensitive and 393 

location-sensitive sites.  394 

We showed that joint population coding results in simultaneous encoding of an attended talker’s voice 395 

and location in spatial multi-talker scenes. However, other mechanisms may also contribute to linking 396 

an attended talker’s voice and location features in spatial multi-talker scenes. In particular, it has been 397 

proposed that different sound features are bound together through synchronization of the slow 398 

fluctuations in neural responses of feature sensitive cortical sites, that is, temporal coherence15. Here, we 399 

evaluated to what extent such temporal coherence contributed to linking the attended talker’s voice and 400 

location. First, we computed temporal coherence between the high-gamma envelope of pairs of neural 401 

sites consisting of one site sensitive to a single talker’s voice and one site sensitive only to a single talker’s 402 

location (Figure 6 A). For each voice-location site pair (n = 57), we quantified temporal coherence of the 403 

high gamma envelope at frequencies between 2-22 Hz using the coherency coefficient. The coherency 404 

coefficient is the frequency-domain mathematical equivalent of the cross-correlation function in the 405 

time-domain38 (within-subjects analysis; Methods). As shown in Figure 6 A, we evaluated the hypothesis 406 

that attention selectively enhances temporal coherence between the voice and location site in each pair 407 

by contrasting temporal coherence in different attention conditions. That is, we examined whether 408 

temporal coherence increased when attention was directed towards a localized talker which matched 409 

the pair’s preferred features (condition ‘preferred features attended’) in comparison to when attention 410 

was directed to a localized talker which was orthogonal to the pair’s preferred features (condition 411 

‘preferred features unattended’).  For example, for a pair of sites consisting of a voice sensitive site tuned 412 

to the female talker and a location sensitive site tuned to the right, we hypothesize that temporal 413 

coherence increases when attention is directed to a female talker on the right in comparison to when 414 

attention is directed to a male talker on the left and the preferred features are therefore unattended 415 

(Figure 6 A). We quantify such attentional modulation of temporal coherence as the coherence gain: 416 

𝐴𝑀𝑐𝑜ℎ =  
𝑐𝑜ℎ𝑥𝑦(𝜔)𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑 −  𝑐𝑜ℎ𝑥𝑦(𝜔)𝑢𝑛𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑

𝑐𝑜ℎ𝑥𝑦(𝜔)𝑢𝑛𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑
 417 
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Here, we define ‘attended’ as the condition in which attention is directed towards the preferred features 418 

and the ‘unattended condition’ as the condition in which the preferred features are unattended (i.e., 419 

because attention is directed towards orthogonal features).  420 

First, we evaluated the development of attentional modulation of temporal coherence over time by 421 

calculating broadband temporal coherence (i.e. across all frequencies between 2 and 22 Hz) in shifting 422 

windows of 1,000 ms with 50 % overlap. Figure 6 B shows a weak but not statistically significant 423 

attentional enhancement of temporal coherence immediately post sound onset (t-test, p = 0.074, FDR 424 

corrected) and a strong and robust gain in temporal coherence starting at approximately 2 s post 425 

stimulus-onset. Furthermore, we examined whether the observed attentional enhancement in the late 426 

response was generic to the range of frequencies tested here (2-22Hz) or whether it was frequency 427 

specific. We therefore repeated the analysis on the late response which showed the most robust 428 

attentional temporal coherence gain (i.e., from 1.75 s until 3.25 s post sound onset) in narrow frequency 429 

bins of 3 Hz (central frequencies [CF]: 3, 6, 9, 12, 15, 18, 21 Hz). We found that in this time window, 430 

attentional enhancement of temporal coherence was generic for frequencies < 22 Hz (Figure 6 C).  431 

Taken together, these results demonstrate that in spatial multi-talker scenes, attention selectively 432 

enhanced temporal coherence between sites sensitive to a single talker’s voice and sites sensitive to a 433 

single talker’s location. Moreover, we showed that this attentional enhancement builds up over time. In 434 

sum, temporal coherence is a plausible binding mechanism for linking voice and location encoding by 435 

single-feature sensitive sites in order to form a complete auditory object in complex, multi-source 436 

auditory scenes. 437 
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Figure 6: Linking an attended talker’s voice and location through temporal coherence. (A) 

Schematic example of attentional modulation of temporal coherence of a pair of neural sites 

consisting of a single-feature voice sensitive site (red) and a single-feature location sensitive site 

(green). (B) Development of broadband temporal coherence gain over time. Error bars reflect standard 

error of the mean (SEM). Asterisks indicate a significant attentional enhancement of coherence. ** = 

p < 0.01, * = p < 0.05. (C) Temporal coherence gain per narrowband frequency bin.  

 

DISCUSSION 438 

In daily-life situations, listeners flexibly extract relevant information from cluttered and dynamic auditory 439 

scenes to form multi-dimensional auditory objects such as a ‘localized talker’. While auditory object 440 

formation is critically dependent on the integration of different feature dimensions (e.g. location and 441 

voice), it is presently not clear how such different sound attributes are linked by the brain. Here, we 442 

utilized the unique spatiotemporal resolution of invasive intracranial measurements in neurosurgical 443 

patients to gain insight into the neural mechanisms linking voice and location sound features in real-life 444 

listening scenes consisting of a single talker or two spatially separated talkers.  445 

We found that cortical responses varied from dual-feature sensitivity to a talker’s voice and location, to 446 

single-feature sensitivity to a talker’s voice or location only. Further, population responses of both dual-447 

feature sensitive and single-feature sensitive sites, simultaneously encoded an attended talker’s voice 448 

and location features. Our findings thus indicate that cortical representations of a multi-dimensional 449 

localized talker are derived from joint encoding in distributed population response patterns rather than 450 

separate voice and location encoding in dual processing streams within delineated anatomical 451 

regions6,7,32. Furthermore, our data indicate that attention enhances temporal coherence between voice 452 

and location sensitive sites, thereby providing an additional mechanism for linking the representations 453 

of both features. These results provide important new insights into the emergence of multi-dimensional 454 

auditory objects2,4 in auditory cortex during active, goal-oriented listening in real-life listening scenes. 455 

Active task design and naturalistic stimuli reveal distributed voice and location encoding 456 

Our data showed that the sensitivity of local cortical sites for a talker’s voice and location features can 457 

be explained by the underlying spectrotemporal tuning properties. These results align with prior research 458 

attributing speaker sensitivity to spectrotemporal tuning properties21 and fast temporal processing to 459 

the posterior-dorsal regions of human auditory cortex25 which tend to show strong spatial sensitivity25. 460 

Additionally, our results highlight that voice and location encoding during active listening occurs in 461 

distributed networks that span the entire auditory cortex rather than within clearly delineated, 462 

functionally specialized cortical regions. Moreover, linking local responses to population encoding 463 

showed that sites which are characterized by functionally specialized local responses (for example, voice 464 
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sensitive sites), nevertheless encode information about both voice and location in their population 465 

responses.  466 

Further, the distributed networks of voice and location sensitivity that we observed at the level of 467 

individual cortical sites is in agreement with a recent study which demonstrated that acoustic and 468 

phonetic processing in auditory cortex are based on distributed, parallel processing rather than serial 469 

processing12. This indicates that distributed processing may be a general characteristic of auditory 470 

encoding and speech encoding specifically10. Moreover, the occurrence of distributed voice and location 471 

representations as observed in the present study conceivably ensures sufficient flexibility to 472 

accommodate sound encoding in changing acoustic environments and with changing behavioral 473 

goals39.  474 

Further, we showed that sensitivity to a talker’s location features is similar across sites that are at lower 475 

stages of the hierarchy and sites that are at higher stages of the hierarchy. These results deviate from 476 

the view that spatial sensitivity emerges only in higher-order regions belonging to the functionally 477 

specialized location stream7,40. Instead, our findings are in agreement with more recent studies with 478 

active task designs which demonstrated that neural location sensitivity in early processing stages (i.e. 479 

primary auditory cortex) is more pronounced during active, goal-oriented  localization8,9. Taken together, 480 

our results emphasize that experiment designs comprising active tasks and naturalistic stimuli are crucial 481 

to uncover representational mechanisms related to goal-oriented behavior in complex auditory scenes. 482 

Pre-attentive and attentive linking of voice and location to form complete auditory objects 483 

Whether attention is required for auditory object formation remains a matter of debate2,15. Some have 484 

argued that auditory streams are formed pre-attentively, for example by the activation of separate 485 

populations of neurons23. Others have posited that attention is required to bind together the various 486 

attributes of the attended object15. Our data showed that a subset of local cortical sites exhibited 487 

sensitivity to both voice and location features, similar to prior findings of multi-feature sensitivity in ferret 488 

auditory cortex13. Moreover, we showed that the population response patterns of these sites gave rise 489 

to representations of the multi-dimensional object, that is, the localized talker. It is therefore conceivable 490 

that the activation of these populations contributes to stream formation in the spatial multi-talker scenes 491 

utilized here. However, to what extent this mechanism is pre-attentive requires further investigation. 492 

Our results also revealed top-down attentional modulation of feature binding. That is, a subset of sites 493 

showed single-feature sensitive responses to either voice or location features, in agreement with the 494 

‘feature analysis’-stage of the temporal coherence framework. According to this framework, distinct 495 

neural populations generate representations of various sound properties15,41,42. Here, we found that 496 

attention selectively enhanced temporal coherence between relevant single-feature voice and location 497 
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sensitive sites. This result is consistent with accumulating evidence16,18 supporting temporal coherence 498 

as a potential mechanism for grouping of perceptual features. An open question is where in the cortex 499 

the read-out of such temporally coherent input takes place. 500 

Taken together, our data indicate that linking of a talker’s voice and location features in spatial multi-501 

talker scenes emerges from a mixture of (potentially pre-attentive) activation of dual-feature sensitive 502 

neural sites, population coding and attentional modulation of temporal coherence between voice and 503 

location sensitive sites.  504 

A continuum of attentional modulations of voice and location encoding 505 

In agreement with prior work21,24, our results show that attending to a talker’s voice and location elicited 506 

weak attentional response gain control. Further, attention dynamically changed spectrotemporal tuning 507 

properties of late-response cortical sites, resulting in contrast matched filtering shape changes that 508 

enhanced local selective tracking of the attended talker’s speech. These results connect prior work in 509 

animals which showed that task performance and attention changed spectrotemporal tuning in auditory 510 

cortex36,37 to attended speech encoding in complex scenes in human auditory cortex. Moreover, these 511 

results extend findings from prior neural measurements in human auditory cortex, which showed that 512 

contextual information elicited adaptive STRF tuning to boost perception of degraded speech35.  513 

Further, an attended talker’s location features elicited comparable attentional gain control in early- and 514 

late-response sites, suggesting that attention affects spatial processing at low-level as well as higher-515 

order processing stages. More research is needed to establish whether these spatial attention effects in 516 

low-level cortical regions emerge from feedback projections originating in higher-order regions39. 517 

Additional work is also needed to evaluate whether attending a talker’s location in multi-talker scenes 518 

affects spatial tuning. That is, studies using single-source experiment designs with an active listening 519 

task reported sharpening of spatial tuning in primary auditory regions8,9 and it is likely that similar effects 520 

take place in multi-talker scenes to support segregating background from foreground. However, to 521 

assess this hypothesis, an experiment design with more fine-grained sampling of azimuth locations is 522 

required to elucidate attentional modulation of spatial receptive fields.   523 

Conclusion and outlook 524 

Our results point to distributed and joint voice and location encoding across auditory cortex during 525 

active, goal-directed behavior. These findings support the view that object formation and attentional 526 

selection emerge gradually and in a distributed manner from the auditory hierarchy, rather than at one 527 

specific site or region in auditory cortex4. Such a distributed code flexibly accommodates rapid changes 528 

in the (acoustic) environment as well as changing behavioral goals. Crucially, the present findings 529 

demonstrate the need for real-life, complex stimuli and experimental designs including active behavioral 530 
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tasks to understand cortical processing of multi-dimensional auditory objects. Future studies including 531 

stimuli spanning a larger and more fine-grained range of talkers, locations and other sound features can 532 

further unravel local cortical tuning properties as well as population representations of multi-533 

dimensional auditory objects. Finally, complementing sEEG measurements with high-density intracranial 534 

measurements (e.g. high-density electrocorticography [ECoG], e.g. 43) are critical to refine cortical maps 535 

of local feature sensitivity, to tease apart fine-grained population representations within and across 536 

macro-anatomical regions, and to further our insights into feature binding through temporal coherence.   537 
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METHODS  651 

Preprocessing 652 

A detailed description of preprocessing of the neural data can be found in 24. In short, data preprocessing 653 

included montaging to a common average reference, noise removal, extraction of the high gamma 654 

envelope (70 – 150 Hz) using the Hilbert transform. The high-gamma envelope is thought to reflect 655 

neuronal population activity44,45. Finally, neural responses were down sampled to 100 Hz and z-scored 656 

across single speaker blocks and across multi-talker blocks (i.e. calculated over both male and female 657 

trials, but separately for single- and multi-source blocks).  658 

Speech responsive electrodes 659 

To assess which electrodes exhibited a robust response to speech streams, we computed for each 660 

electrode the mean baseline response as the average of the high-gamma envelope during 0.5 seconds 661 

preceding stimulus onset, and the mean speech onset response as the average of the high-gamma 662 

envelope in the 0.5 seconds following stimulus onset. To test for a statistically significant auditory 663 

response, we performed a paired samples t-test for each electrode and applied FDR correction across 664 

electrodes to correct for multiple comparisons. Only electrodes that exhibited a robust auditory response 665 

at q < 0.05 were included in the remainder of the analysis.    666 

Estimating spectrotemporal receptive fields (STRFs) and response latency 667 

First, we computed a cortical spectrogram representation of each sound scene using a model of early 668 

cochlear processing and mid-brain auditory processing (NSL toolbox1). We modeled cochlear processing 669 

using a filter bank of 128 constant-Q filters that were spaced equally on a logarithmic axis ranging from 670 

center frequency (CF) = 270 Hz to CF = 7,246 Hz. Next, we modeled auditory midbrain processing by 671 

taking the derivative along the frequency axis, performing half-wave rectification and applying short-672 

term temporal integration46,47. This approach accounted for the enhanced frequency selectivity as a 673 

consequence of lateral inhibition, as well as reduced phase locking, observed after midbrain processing. 674 

Cortical spectrograms were computed based on monaural stimulus waveforms (i.e. independent of 675 

sound location). The resulting spectrograms had a sampling frequency of 100 Hz and were down 676 

sampled to 50 channels to reduce the number of parameters.  677 

We then estimated the spectrotemporal receptive field (STRF) by linearly mapping the cortical 678 

spectrogram to the evoked response using the STRFlab MATLAB Toolbox48 (http://strflab.berkeley.edu). 679 

For each electrode, we used the past 300 ms of a stimulus to predict the neural response at every time 680 

point using normalized reverse correlation. To prevent overfitting, we used a five-fold cross-validation 681 

 
1 Available from http://nsl.isr.umd.edu/index.html  
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procedure. We optimized sparsity and regularization parameters by maximizing the correlation between 682 

actual and predicted responses. Using the resulting STRFs, we defined the response latency for each 683 

electrode as the time point corresponding to the peak energy in the STRF. 684 

Decoding a single talker’s voice and location features 685 

We trained a four-class classifier on population neural response patterns to jointly decode a talker’s 686 

voice and location features. The four classes corresponded to ‘male talker, left’, ‘male talker, right’, 687 

‘female talker, left’ and ‘female talker, right’.  We used frame-by-frame, regularized least-squares (RLS) 688 

classification22,33 which produced for each time frame a linear weighted sum of the population of neural 689 

responses for each class22. We trained and tested classifiers on the sustained responses only (i.e., 690 

excluding response onset effects from 0 to 500 ms). The class with the highest average classifier output 691 

over all frames in the trial was taken as the predicted class.  692 

We trained the classifier in a leave-two-trials-out cross-validation procedure on the single-talker data 693 

(corresponding to 25 folds). We computed classification accuracy as the average accuracy across the 25 694 

folds. Further, to evaluate the statistical significance of classification accuracies, we performed a 695 

permutation analysis in which we randomly permuted the class labels and repeated the complete 25-696 

fold cross-validation procedure. We iterated this process 2,000 times to create a null distribution of 697 

classification accuracy. Next, we tested whether the observed classification accuracy exceeds the 95 th 698 

percentile of the null distribution of permuted accuracies (one sided test). We computed p as the 699 

proportion of permuted accuracies that was equal to or larger than the observed accuracy.   700 

Finally, we calculated marginal accuracies for the voice and location feature dimensions by labelling 701 

accuracy based on a single feature dimension only, ignoring the other feature dimension. For example, 702 

to quantify the marginal accuracy for voice features, we calculated the percentage of the trials for which 703 

the correct voice class was predicted (i.e. female or male talker), ignoring the predicted location class 704 

(i.e. left or right). We computed the marginal accuracy also as the average across the 25 folds and used 705 

the permutation procedure described above to assess the statistical significance of the marginal 706 

accuracies. 707 

Attentional-driven response gains in multi-talker scenes 708 

For each electrode, we quantified the strength and direction of attentional modulations of cortical 709 

responses in the multi-source scenes evoked either by attending to a talker’s voice features or by 710 

attending to a talker’s location features using Cohen’s d. That is, similar to the quantification of single-711 

talker feature sensitivity described above, we computed the mean response for each trial in the multi-712 

source condition as the mean from 0.5 s post sound onset to 1.5 s post sound onset. Then, to test for 713 

attention-driven response gains for a talker’s voice features, we computed the effect size for the 714 
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difference between the mean responses to all ‘attend male’ and ‘attend female’ trials, irrespective of the 715 

attended location of the trials (n = 50 each). To test for attention-driven response gains for a talker’s 716 

location features, we computed the effect size for the difference between the mean responses to all 717 

‘attend left’ and ‘attend right’ trials, irrespective of the attended talker of the trials (n = 50 each).   718 

Decoding an attended talker’s voice and location features in multi-talker scenes 719 

To decode an attended talker’s voice and location features in spatial multi-talker scenes, we trained the 720 

four-class classifier on the multi-talker data using a similar procedure as described above. In multi-talker 721 

scenes, class labels consisted of ‘attended male talker, left’, ‘attended male talker, right’, attended female 722 

talker, left’ and ‘attended female talker, right’. We also assessed statistical significance using a 723 

permutation procedure similar to the permutation procedure for single talker data.  724 

Quantifying temporal coherence 725 

We assessed temporal coherence in slow fluctuations in stimulus evoked responses between pairs of 726 

voice sensitive and location sensitive sites. This analysis was performed on a within subject level. Five 727 

subjects contained multiple voice-location pairs of and were therefore included in the analysis. Because 728 

the high-gamma envelope is considered a signature of neural population responses44,45, we computed 729 

temporal coherence on the high-gamma envelope. Further, we quantified temporal coherence using the 730 

coherency coefficient, which is the mathematical equivalent in the frequency domain of the cross-731 

correlation function in the time domain38. Specifically, the coherence coefficient is the normalized 732 

average cross-power spectral density between signals 𝑥 and 𝑦 across trials at frequency ω computed 733 

as38: 734 

𝑐𝑜ℎ𝑥𝑦(𝜔) =  
|
1
𝑛

∑ 𝐴𝑥(𝜔, 𝑘)𝐴𝑦(𝜔, 𝑘)𝑒𝑖(𝜑𝑥(𝜔,𝑘)−𝜑𝑦)𝑛
𝑘=1 |

√((
1
𝑛

∑ 𝐴𝑥
2𝑛

𝑘=1 (𝜔, 𝑘)) (
1
𝑛

∑ 𝐴𝑦
2𝑛

𝑘=1 (𝜔, 𝑘)))

 735 

Here, we computed broadband temporal coherence over a frequency range of 2 – 22 Hz to map the 736 

development of attentional enhancement of temporal coherence over time, correspond to the range of 737 

slow fluctuations in which temporal coherence for feature binding is hypothesized to occur (i.e. 50 ms 738 

to 500 ms15). Furthermore, we computed narrowband temporal coherency for eight frequency bands 739 

with center frequencies 3, 6, 9, 12, 15, 18, and 21 Hz (bandwidth = 3 Hz) to examine the effect of attention 740 

on temporal coherence for specific frequencies.  741 

  742 
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