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SUMMARY
The magnitude of neuronal activation is commonly considered a critical factor for conscious perception of
visual content. However, this dogma contrasts with the phenomenon of rapid adaptation, in which themagni-
tude of neuronal activation drops dramatically in a rapid manner while the visual stimulus and the conscious
experience it elicits remain stable. Here, we report that the profiles of multi-site activation patterns and their
relational geometry—i.e., the similarity distances between activation patterns, as revealed using intracranial
electroencephalographic (iEEG) recordings—are sustained during extended visual stimulation despite the
major magnitude decrease. These results are compatible with the hypothesis that conscious perceptual con-
tent is associated with the neuronal pattern profiles and their similarity distances, rather than the overall acti-
vation magnitude, in human visual cortex.
INTRODUCTION

What is the neuronal code that underlies perceptual experiences

in the human brain? A dominant theme supported by numerous

studies, involving bistable illusions, binocular rivalry, backward

masking, or attentional shifts,1–7 as well as the study of sponta-

neous blinks,8 is the notion that perception is associated with a

rapidly increased magnitude of neuronal activity.

However, a puzzling contradiction to these converging lines of

evidence is presented by the finding of a robust and rapid

neuronal adaptation effect. Rapid adaptation refers to a dramatic

reduction in the magnitude of neuronal activity in the visual cor-

tex despite a constant visual input and its accompanied stable

perceptual experience. These rapid adaptation effects appear

a few hundreds of milliseconds after stimulus onset,9,10 have

been documented across the visual cortex,8,9,11–13 and are unaf-

fected by the stimulus presentation duration under laboratory12

or ecological, free-viewing, conditions.14 They likely share com-

mon mechanisms with the phenomena of visual adaptation and

repetition suppression.15–17

The rapid adaptation phenomenon poses an obvious conun-

drum to activation magnitude-based theories of perception. Sim-

ply put, if the magnitude of neuronal activity determines percep-

tual awareness, how does perception remain stable despite this

massive reduction? Complementarily, one may view this dissoci-

ation as an opportunity to uncover the neuronal codes that do

remain stable in tandem with the stable nature of perception.
This is an open access article under the CC BY-N
Interestingly, recently, the question of the neuronal correlates of

perceptual stability has been identified as a key experimental test

in an adversarial collaboration, proposed to formadifferential pre-

diction of two theories of conscious experience—the global work-

space theory (GWT) and the integrated information theory (IIT).18

If magnitude is not the factor underlying perceptual stability,

then what could be the alternatives? An attractive hypothesis,

inspired by classical structuralist perspectives, proposes that

activationpatterns’ profiles (orientation of thepopulation vectors),

and specifically their similarity relationships, may constitute such

a code.19–30 In the rest of the text, wewill term these similarity dis-

tances the relational code.

Here, we set out to examinewhether these pattern profiles and

their relational codes remain stable across stimulus presentation

time, thus enabling perceptual stability. Our results also allowed

us to test the predictions made in the adversarial collaboration18

and hence contribute experimental evidence relevant to different

theories of consciousness in the brain.

RESULTS

The study is based on intracranial electroencephalographic

(iEEG) recordings conducted for clinical purposes in 13 patients

implanted with 2,571 electrode contacts (see Table S1 for de-

tails; data were collected as part of a previous study13,31).

iEEG recordings were taken while patients performed a simple

visual task (see Figure 1A and STAR Methods), viewing colored
Cell Reports 42, 112614, June 27, 2023 ª 2023 The Author(s). 1
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images of 28 familiar faces and places (14 from each category)

for 1,500 ms, followed by fixation for 750 ms. Visibility was veri-

fied by successful post-session memory recall (see Norman

et al.13,31 and STAR Methods).

For analysis purposes, visually responsive electrode contacts

were subdivided into four groups based on anatomical and func-

tional criteria: early visual (n = 32); face-selective (n = 43); con-

tent-selective: contacts showing a significant preference for a

specific subset of exemplars (n = 114); and fronto-parietal visu-

ally responding contacts (n = 63) (for further details, see STAR

Methods and Table S1). Figure 1B depicts the location of the

iEEG contacts, color-coded according to each group.

As a measure of neuronal activity, we have analyzed the

broad-band power of high frequencies of the iEEG signal

(HFBP [high frequency broadband power]: 60–160 Hz), which

we and others have demonstrated to be tightly linked to average

neuronal firing rates within the recording sites.32–34 Figure 1C de-

picts the averaged HFB response magnitude in each contact

group, revealing the response latency and the response dy-

namics elicited by the visual stimulation.

Response latency across cortical sites
The latency of visual responses and their delays across different

cortical sites is of great theoretical interest.18 The wide iEEG

coverage in our visual task (see Figure 1B) provided a good op-

portunity to examine this question in the present experimental

paradigm. Precise measurements of response latencies for

both half-peak and peak response magnitudes (Figure 1C, blue

arrows) revealed an activation delay between early visual cortex

and high-order face-selective contacts of �60 ms (half peak),

while, interestingly, the half-peak latency of frontal contacts

was 164 ms—showing only a �20 ms delay relative to the

face-selective contacts.

Response magnitude changes during sustained
stimulation
As can be seen in Figure 1C, all four contact groups displayed a

rapid adaptation effect characterized by an early onset response

at 200–300 ms, followed by a striking amplitude decline despite

the sustained, constant visual stimulation (decreasing in �70%

after 1 s; see Figure 1C for precise percentage decreases at

times 0.5 and 1 s after stimulus onset). The adaptation effect

was particularly prominent in the high-order visual contacts.

Early visual contacts showed a less pronounced decline, while
Figure 1. Experimental design, contact locations, and mean HFB resp

(A) Patients undergoing intracranial recordings viewed 28 different images of fam

inter-stimulus intervals (ISIs). Face and place stimuli shown in all figures are acc

copyright limitations.

(B) Multi-patient contact coverage, shown on inflated (lateral view: top left; ven

contacts were allocated to the following subgroups: early visual areas V1 and V2

areas (yellow); contacts that are included both in the face-selective and in the

selectivity (green); and other visual contacts (white) (see STAR Methods). Remain

right hemisphere; LH, left hemisphere; LO, lateral occipital cortex; ITG, inferior te

(C) Mean HFB (60–160 Hz) responses time locked to stimuli onset, depicting the a

on duration. Shaded areas represent ± SEM across contacts, and the contact nu

two-term exponent fit to the data. Percentage signal change of the response a

response, are denoted in black for the exp. model fit, and in color for the meas

respectively.
the fronto-parietal visual contacts exhibited a marked adaption

but a far weaker signal overall that, interestingly, exhibited an

offset response following stimulus termination.

Diversity in response patterns and their inter-stimuli
distances
Inspecting themulti-contact population patterns of the high-order

content-selective contacts revealed that each visual exemplar

was associated with a distinct profile of a multi-contact pattern,

i.e., a unique population vector (examples shown in Figure 2).

For the convenience of comparison across these patterns, the

contacts (n = 114) are arranged in descending order of their acti-

vation magnitude in response to an image of BruceWillis, 300ms

after its onset. This serial order of the contacts was maintained in

the three other pattern histograms as well. The electrode colors

depict their response magnitude to each specific stimulus, from

the strongest response (light blue) to the weakest (black). Two

clear aspects can be gleaned from these examples: first, the acti-

vation encompassed the entire set of contacts. Second, each vi-

sual image elicited a unique profile or population activity vector

across the set of contacts, metaphorically resembling a ‘‘bar-

code’’ of each image. In a similar manner, the relational coding,

i.e., the similarity distances between the patterns, also varied,

as can be visually appreciated by comparing the similarity of

theBruceWillis elicited patternwith the other three activation pro-

files, depicted in Figure 2. The similarities between activity-

pattern pairs were quantified in the present study by calculating

the Pearson correlation between the two population vectors

(see STAR Methods). It should be noted that unlike coherence

measures, Pearson correlation is sensitive only to the relative

activation profiles within the patterns and not to their absolute

magnitude levels. The inverse of the pairwise pattern similarity

was defined as the neuronal distance (d) between the pair of stim-

uli-related patterns and was calculated as 1 � Pearson’s r.

Comparing the distances between the population vector acti-

vations to multiple repeats of the same image with the distances

between different stimuli revealed a significant difference (un-

paired two-tailed t test, t = 13.2314, p < 0.0001) with a smaller

mean distance for within-stimuli repeats of 0.33 (±0.07 SEM)

vs. the between-stimuli mean distance of 0.52 (±0.03 SEM).

Stability of population activity patterns across time
We first examined the stability of the stimulus-linked activation

patterns (see STAR Methods for details of this analysis) in the
onses to image presentations

ous faces and places. The stimuli were presented for 1.5 s each, with 750 ms

urate illustrations of the original images used in the study, in compliance with

tral view: top right) and on flat common cortical surfaces. Visually responsive

(blue); face selective (red); content-selective electrodes in intermediate visual

content-selective groups (orange); frontal-parietal contacts showing visual

ing contacts, which did not display visual responses, are marked in gray. RH,

mporal gyrus; PHG, parahippocampal gyrus.

verage visual response of each contact set. The gray line denotes the stimulus-

mber (n) of each set is denoted in the figure. The black dashed line indicates the

mplitude at times 0.5 and 1 s after stimulus onset, compared with the peak

ured data. Blue horizontal arrows point to the half-peak time and peak time,
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Figure 2. Activity patterns of all visual content-selective contacts (n = 114) to four different stimuli exemplars

Each histogram depicts the normalized HFB response of all contacts to the specific stimulus, averaged across time windows 250–350 ms post-stimulus onset.

Contact order is preserved for all four stimuli and is arranged according to amplitude strength in response to the Bruce Willis image. Contact color depicts the

amplitude level in response to each stimulus, from the strongest response (light blue) to the weakest (black). Distances (d) between the stimuli-evoked patterns

are defined as 1 – Pearson’s r and are depicted by the proportional length of the arrows. Face and place stimuli shown in all figures are accurate illustrations of the

original images used in the study, in compliance with copyright limitations.
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high-order content-selective visual contact group (all results

from here on will refer to this set of contacts until noted dif-

ferently). Figure 3A depicts the cross-time (inter-temporal)

distances matrix, defined as 1 � Pearson’s r, between the

multi-contact activity patterns across all pairs of time bins during

the trial (using 100ms averaged time bins), calculated separately

per stimulus, and then averaged across all stimuli (see STAR

Methods). Figure 3B shows the across-stimuli average inter-

temporal correlation profiles (essentially a horizontal cross-sec-

tion line of the inverse of the distancesmatrix shown in Figure 3A),

at a few example time points, revealing a significant increase in

inter-temporal pattern correlations throughout the entire image

presentation duration (p < 0.005, using 1,000 randomly shuffled

permutations, false discovery rate [FDR] and cluster corrected).

The inter-temporal correlations showed a transient increase in

the early onset-related time bins, which later subsided into sta-

ble, significant correlation levels (see the correlation profile of

0.3 vs. 1.5 s in Figure 3B).

Stability of relational geometry
We next examined the stability of the relational geometry, calcu-

lated by comparing the representational dissimilarity matrix

(RDM), the matrix containing all stimuli-pattern pairwise dis-

tances,22,23,35 across time (see STAR Methods). Figure 3C

shows the inter-temporal distancematrix for the relational geom-

etries across all different time points, while Figure 3D depicts the
4 Cell Reports 42, 112614, June 27, 2023
profiles of the inter-temporal correlation time courses at selected

time points. The overall picture largely resembled the stability of

the activity patterns—displaying significant and sustained RDM

correlations across the entire duration of the stimuli presenta-

tions, with a transient increase in the correlations during the early

time windows (p < 0.005, across 1,000 shuffled permutations,

FDR and cluster corrected).

Stability of relational coding
Next, we examined the stability of the relational coding of the

stimuli, estimated by calculating the distances of a specific im-

age-related pattern to all other stimuli-elicited patterns in our

set, as is illustrated in Figure 2. Figure 4A shows an example

of a complete relational code profile for the Bruce Willis image,

derived from the content-selective contact group (n = 114). As

can be seen, the distances were far from uniform varying over

a wide (>3-fold) range. This broad range of pattern similarity

distances was a common feature, as can be appreciated

from Figure 4B, which depicts the average, sorted, similarity-

distance profiles across all stimuli (see STAR Methods). An

anticipated category-related effect, exhibiting smaller dis-

tances within as compared with across categories, is also

clearly evident in Figures 4A and 4B (see also the inset in Fig-

ure 4B, depicting the mean distances across all stimuli pairs

for within vs. between categories; p < 0.0001, two-sample

t test).



Figure 3. Multi-contact pattern and RDM stability across time in content selective contacts (n = 114)

(A) Mean inter-temporal pattern-distance matrix, exhibiting the distances between stimulus-evoked response patterns for all time bin pairs, using 100 ms time

windows. Half-transparent colored regions mark distances that are non-significant, as tested relative to distances emerged from 1,000 random shuffling per-

mutations, while distance values shown in full opaqueness are statistically significant (p < 0.005 permutation test, FDR and cluster corrected), displaying pattern

stability across stimulus duration.

(B) Example pattern correlation time courses, displaying the Pearson r coefficients between stimuli-related activity patterns at the indicated time bins in each

panel vs. all 100 ms time bins between �0.5 and 2.2 s. Gray step plots mark stimulus duration time (0–1.5 s), and the dashed vertical lines indicate the selected

time bin. Shaded areas represent ± SEM across the different stimuli (n stimuli = 28). Yellow lines indicate statistical significance at p <0.005, FDR and cluster

corrected (permutation test using 1,000 shuffled permutations).

(C) Inter-temporal RDM distance matrix, exhibiting the distances between RDMs calculated separately for each time bin, across all time bin pairs. Statistical

significance assessed and denoted as in (A).

(D) Example RDM correlation time courses, depicting the Pearson r coefficients between the RDMs at the indicated time bins in each panel vs. the RDMs from all

100 ms time bins between �0.5 and 2.2 s. Shaded areas represent ± SEM across the leave-one-out iterations (n = 4; see STAR Methods for details). Statistical

significance and notations as in (B).
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To examine the stability of the relational code, we calculated

the across-stimuli mean matrix of the inter-temporal relational

code distances, displayed in Figure 4C (see STARMethods). Fig-
ure 4D displays a few selected time point correlation examples.

Together, they display a similar dynamic profile to the stimuli-ac-

tivity patterns and RDM findings shown in Figure 3.
Cell Reports 42, 112614, June 27, 2023 5



Figure 4. Stability of relational coding across time in content-selective contacts (n = 114)

(A) An example of the relational code of the Bruce Willis image. Histogram bars denote the distances of all other stimuli-linked patterns from the Bruce Willis

activity pattern, at time 0.3 s post-stimulus onset.

(B) Sorted relational codes averaged across stimuli (n = 28), error bars represent SEM across the stimuli. For each stimulus, the relational codewas calculated and

sorted in ascending order, as shown in the example in (A); these sorted relational codes were then averaged across all stimuli, obtaining amean distances vector,

illustrating the reliability of this metric across stimuli. Proportions of within-category stimuli pairs vs. between-category pairs are marked by the relative orange

(within category) vs. yellow (between categories) areas of each bar, reflecting that within-category pairs display shorter distances than between-category pairs.

This is further illustrated in the inset bar plot, presenting the mean of all within- vs. between-category pair distances (unpaired two-tailed t test, p < 0.001,

t = �33.97). Error bars denote SEM across all stimuli pairwise distances (within-category n = 364, between-category n = 392).

(C) Mean inter-temporal relational coding distance matrix, exhibiting the distances between the relational code vectors across all time bin pairs, averaged across

stimuli. Statistical significance assessed and denoted as in Figures 3A and 3C.

(D) Example relational coding correlation time courses, displaying the Pearson r coefficients between the relational code at the indicated time bins in each panel

vs. the relational codes from all 100ms time bins between�0.5 and 2.2 s, averaged across all stimuli. Shaded areas represent ± SEM across the different stimuli

(n stimuli = 28). Statistical significance and notations as in Figures 3B and 3D.
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Figure 5. Across-time stability comparison of the response ampli-

tude, population vectors (PVs) and relational code (RC) correlations,

for the content-selective electrode set (n = 114)

Across-time stability is defined as the ratio between the values measured at

time 0.2 s after stimulus onset and at time 1.2s (for additional details, see main

text and STARMethods). The bars indicate the across-stimuli average stability

levels of the three parameters, and the gray dots indicate the individual stimuli

values (n stimuli = 28). The dashed red line marks perfect across-time stability,

i.e., a ratio of 1. ***p < 0.001, Bonferroni-corrected post-hoc comparisons test.
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Dynamics and effects of signal-to-noise levels
What could be the source of the early transient increases

observed in the inter-temporal correlations? A likely candidate

may be a higher signal-to-noise ratio (SNR) in the initial,

compared with the later, phase of the response. Examining the

dynamics of the SNR in the content-selective contact group

indeed revealed a major increase in SNR at the initial time win-

dows (see Figure S1A), coinciding with the response amplitude

increase, as well as a slight noise decrease. This phenomenon

was common to all contact groups, as can be seen in Figure S2,

albeit with the lowest overall SNR levels in frontal contacts and

the highest in the early visual cortex.

In order to examine the potential effect of SNR on inter-tempo-

ral relational-code correlations, we compared correlations

derived from time courses averaged across multiple trials with

the noisier single trial-based time course correlations (see

STAR Methods). This revealed that lower noise levels (i.e., in

averaged trials) indeed resulted in higher inter-temporal correla-

tion values (see Figures S1B and S1C).
Stability comparison across the different coding
mechanisms
A quantitative comparison of the stability of the response ampli-

tude, population patterns, and relational codes over time is pre-

sented in Figure 5. For this analysis, the stability of the response

amplitude was defined by the ratio of the response at time 0.2 s

with that of time 1.2 s. For the stability of the population vectors

(PVs) and relational codes (RCs), we first calculated the correla-

tions of the PVs and RC vectors at times 0.2 and 1.2 s with the

vector at time 1.5 s as reference (see discussion for the rational

of choosing this late time point for comparison, stemming from

SNR differences) and then extracted the ratio between these

correlation values. As can be seen, the response amplitude

showed a greater level of transiency, with significantly higher

early vs. late ratio levels, indicating less across-time stability,

compared with the PV and RCmeasures, which were essentially

unchanged across time, yielding an early/late ratio of �1

(mean ratio values for response amplitude: 6.26 ± 3.44 SD,

PV: 1.18 ± 0.37 SD, and RC: 1.14± 0.70 SD; Welch’s ANOVA

F(2, 39.66) = 27.82, p < 0.001; Bonferroni post-hoc comparisons

for amplitude > PV ratio: p < 0.001; amplitude > RC ratio:

p < 0.001; PV > RC ratio: p = 0.55).

Pattern stability in high- and low-order cortical areas
In addition to the content-selective contact group, shown above,

we examined contacts both from earlier areas in the visual hier-

archy (early visual cortex, n = 32) as well as the fronto-parietal

cortex (fronto-parietal visual contacts, n = 63; see Figure 1B

for the anatomical localization of these contact groups). Addi-

tionally, it should be noted that the content-selective set encom-

passed a relatively heterogeneous group of high-order visual

contacts. To examine a more homogeneous set, we defined a

smaller group of solely face-selective contacts (n = 43; see

STAR Methods and Figure 1B for their locations).

Figure 6 exhibits the inter-temporal distance matrices depict-

ing the stability of the activity patterns, RDMs, and RCs for the

face-selective and early visual contact sets (Figures 6A and

6B, respectively, contact locations shown on inflated cortical

surfaces on the left). As can be seen, the face-selective group

showed a high resemblance to the content-selective group re-

sults (p < 0.005, permutation testing using 1,000 shuffled per-

mutations, FDR and cluster corrections). By contrast, the early

visual group manifested a robust pattern stability effect but

showed only transient, variable, and unstable RDM and rela-

tional geometries representations across time.

The visual fronto-parietal contacts displayed the most promi-

nent differences, with essentially no significant inter-temporal

correlations of the relational geometries or relational coding,

although some weak pattern correlations were observed. How-

ever, due to the sparse sampling of this cortical region in the

available dataset, thismay stem from insufficient sampling rather

than an essential qualitative difference between the regions.

Could the difference between the pattern stability and RDM

transiency in the early visual cortex be due to less distinct indi-

vidual pattern profiles—i.e., smaller distances between different

stimuli-evoked patterns in the early cortex—compared with

high-order contacts? To examine this possibility, we calculated

all across-time averaged distances between activity patterns in
Cell Reports 42, 112614, June 27, 2023 7



Figure 6. Mean activity patterns, RDMs, and relational coding stability across time in two additional visual functional groups

Contact locations are presented on inflated cortices in the left-side panels, for face-selective (n = 43) (A) and early visual (n = 32) (B) contacts. Inter-temporal

distances (1� r) of stimuli-evoked patterns, RDMs, and relational codes are calculated similarly to Figures 3A, 3C, and 4C, respectively, for each of the regions of

interest (ROIs). Half-transparent colored regions mark distances that are non-significant, while distance values shown in opaque colors are statistically significant

(1,000 random shuffling permutations, p < 0.005, FDR and cluster corrected).
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early visual contacts and in the high-order content-selective

contacts. The results revealed that the similarity distances in

early visual cortex contacts were indeed significantly smaller

than the distances in high-order content-selective contacts

(two-tailed paired t test, t405 = �10.37, p < 0.001; see Figure S3

for the distributions of these distances). However, it is important

to emphasize that due to a lack of a direct test for the effects of

the smaller inter-stimuli distances, alternative sources for the

transient results in the early visual cortex cannot be ruled out.

Stability of pattern decoding
An additional index of informational stability that is maintained in

the pattern responses across time can be gained by examining

the accuracy of inter-temporal decoding, of both the category

and the single-item identity of the presented visual stimuli. In

fact, inter-temporal category decoding was also chosen by the

COGITATE adversarial collaboration as one of their two main

measures when contrasting the predictions of the GWT vs. IIT

theories.18 Here, we trained a separate independent classifier

on each single time point and then tested its performance across

all other time bins, individually for exemplar and categorymodels

(see STAR Methods).

Decoding accuracy levels across time (see STARMethods) are

presented in the inter-temporalmatrices in Figure 7. High-order vi-

sual contacts (content and face selective) showed a similar profile
8 Cell Reports 42, 112614, June 27, 2023
of significant (p < 0.005, shuffled permutation test, FDR and clus-

ter corrections) inter-temporal decoding accuracy levels across all

training vs. testing time bins during the stimulus presentation

period, for both single-item and category decoding (see Figures

7A and 7B). The face-selective group showed slightly weaker de-

coding levels, likely due to the smaller number of contacts.

In order to rule out category-related effects in single-itemclassi-

fication, we additionally trained and tested separate exemplar de-

coders for each category class individually (see STAR Methods).

Within-category exemplar decoding showed largely similar dy-

namics to the cross-category exemplar-decoding results, though

they were more variable and less stable (see Figure S4).

Inter-temporal decoding results in early visual contacts (Fig-

ure 7C) interestingly indicated accurate decoding levels only for

specificexemplars,withessentially nostatistically significantcate-

gory decoding. Note that this failure of category decoding was

evident also when training and testing the decoder on the same

time points, which are depicted in themain diagonal of the decod-

ingmatrix in Figure 7C (right panel), further indicating that this was

not a result of a temporal instability effect but rather stemmed from

the feature-based nature of early visual cortex representations.

Finally, although showing significant visual responses at the

single contact level, the frontal visual contacts failed to show sig-

nificant inter-temporal decoding for both single exemplars and

categories.



Figure 7. Exemplar and category decoding

accuracy across time in the 3 contact groups

Content-selective contacts (n = 114) (A), face-se-

lective contacts (n = 43) (B), and early visual (n = 32)

(C) contacts. An individual classifier was trained on

the activity patterns of each time bin, and then

tested on all other time bins, using simple pattern-

matching decoding for the exemplar decoding and

a k-nearest neighbor (k-NN) classifier for category

decoding. Dashed red lines on the color scale bar

mark chance level (1/28 = 3.57% for exemplar de-

coding, and 1/2 = 50% for category decoding).

Significant accuracy levels were calculated from a

shuffled permutation test, comparing the real mean

accuracy levels with the distribution of mean accu-

racy scores from 1,000 shuffled-label permutations.

Statistically significant decoding- accuracy levels

are shown in opaque colors (p < 0.005 permutation

testing, FDR and cluster-based corrections), while

insignificant values are shown as half-transparent.

See STAR Methods for further details.
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DISCUSSION

A dissociation between perception and activation
magnitude
Our results (Figure 1) replicate previous findings of a dramatic

decline (to about 30%) in the magnitude of the visual neuronal re-

sponses in visual cortex aswell as in fronto-parietal regions,within

a rather brief time period, during constant visual stimulation.8,12

These studies have demonstrated that, specifically in high-order

visual areas12 the transient nature of response magnitude drasti-

cally dissociates from the constant optical stimulus on the one
hand and from the perceptual state on the

other. Importantly, this phenomenon is not

merely a byproduct of controlled laboratory

conditions12 but appears as robustly under

ecological, natural behavioral conditions

as well.14

Thus, it is clear that the magnitude of

neuronal activation is unlikely to serve as

the neuronal correlate of sustained

conscious perception. By contrast, uncov-

ering stable parameters of the response

can point to the neuronal mechanism that

underlies the stability of visual perceptual

awareness. Here, we hypothesized, based

on recent theoretical considerations,19,20,35-

that such a stable coding mechanism is

readily available in the profiles of activation

patterns and their relations.

Stable profiles of activity patterns
revealed in high-order visual areas
We examined the population activity pro-

file and relational coding hypothesis in

the context of an image viewing task in

which familiar face and place images

were presented to the patients for 1.5 s.
Our results demonstrate that while activation magnitude rapidly

declined within less than 500 ms, examining the similarity of

pattern profiles across time (defined through correlation-based

distances), as well as the stimuli representational geometry, or

RDM, and the RC, revealed that they were all sustained

across time for the entire stimulus duration. This general stability

effect was evident in high-order content-selective as well as

face-selective contacts but was not as marked in early visual

areas (see Figures 3, 4, and 6). We have previously proposed

that different cortical regions may manifest distinct relational

geometries, endowing them with their unique functional
Cell Reports 42, 112614, June 27, 2023 9
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specializations.19 Here, we demonstrate this in the temporal

domain and show that, indeed, there were substantial differ-

ences across early and high visual cortical areas.

Further direct comparison of the stability of the response

amplitude vs. the population patterns and relation code correla-

tions across time, obtained by examining the ratio of these cod-

ing parameters at an early vs. late time point in the trial, revealed

significant reductions in the magnitude, compared with nearly

perfect stability (ratio of �1) in the other two population codes

(see Figure 5), in the content-selective contact set.

Thus, the inter-temporal correlations of the three pattern-rep-

resentation measures in the high-order visual cortex nicely

demonstrate that pattern-based stability is evident at all levels:

in the individual stimuli-linked population patterns, in the entire

stimuli-space geometry defined by the distances between these

patterns (RDM stability), and in the specific RC of each stimulus

within the image vector space.

Examining the magnitude of inter-temporal correlations re-

vealed a clear and transient increase in the early time points

(300–500 ms) (Figures 3 and 4). It could be argued that this tran-

sient enhancement may be due to summation with an additional,

transient pattern response profile that subsides, exposing a more

stableandpersistent pattern.However, careful examinationof the

inter-temporal correlation dynamics at different time points ar-

guesagainst this interpretation. Inparticular, examining theprofile

of inter-temporal correlations to the late pattern at 1.5 s (Figures

3B, 3D, 4D, and 5) revealed that it remained stable across the

entire duration of the stimulus, which is incompatible with the ex-

istence of a different transient pattern. A more plausible explana-

tionmaybe the reduction in theSNR,whichwedemonstrated can

reduce inter-temporal correlations (seeFigureS1) andwasacom-

mon phenomenon across all contact groups (see Figure S2).

These transient changes in the SNR are also directly related to

the choice of the 1.5 s time point as the reference for calculating

the PV and RC stability (Figure 5). In principle, and given that

perception was stable throughout the entire stimulus duration,

one would expect a measure that tightly follows the perceptual

state to be invariant to the choice of the reference time point for

which stability measures are calculated. However, as discussed

above and shown in Figures 3B, 3D, and 4D, this was clearly not

the case. Rather, the correlation time courses demonstrate highly

non-symmetrical behavior, where choosing an earlier time point

as reference resulted ina skewed timecoursewith increasedearly

time bin correlations, while choosing a late time bin reference

showed stable, relatively constant cross-time correlation levels.

As we discussed above and demonstrate using control analyses

(shown in Figure S1), a likely explanation for this asymmetry is

the drastic change in the SNR in early vs. late time points,

which strongly modulates the correlation values. To avoid this

confounding, we chose the latest time point (1.5 s after stimuli

onset) as our reference point for determining the stability of the

PV and RC codes, as it was least likely to be affected by the tran-

sient SNR effect.

Stability of RC in face-selective contacts
Due to methodological limitations inherent in iEEG, our sampling

necessitated combining high-order visual contacts with diverse

category selectivity. However, examining a smaller group of con-
10 Cell Reports 42, 112614, June 27, 2023
tacts that showed a single-category selectivity, i.e., face-selec-

tive contacts, largely replicated the main inter-temporal stability

effects from the content-selective contact set (though noisier,

likely due to the smaller contact number; see Figure 6A). This

is in agreement with previous studies from our group24 as well

as others,23 suggesting that these contacts comprise a separate,

functionally defined cortical geometry.

Comparing the number of contact recordings across the

three major visual groups, early visual (n = 32), content selective

(n = 114), and face selective (n = 43), supports the notion that the

stability profile was dominated by the hierarchical level rather

than sampling density or contact number, e.g., the content-se-

lective and face-selective sets had a very different contact num-

ber (�2.5-fold difference), while their results proved to be very

similar.

Inter-temporal decoding and its relevance to theories of
conscious experience
Recently, in an attempt to experimentally examine the predic-

tions of two consciousness theories—the GWT and the IIT—an

‘‘adversarial’’ collaboration was proposed to examine inter-tem-

poral visual information stability as an experimental test of these

theories.18

Due to the sparse sampling of fronto-parietal contacts in our

study, we cannot draw clear conclusions from our inter-temporal

decoding analysis in these regions, especially in regard to the

GWT predictions that focus on this region. However, it should

be noted that our response latency measurements were incom-

patible with the GWT prediction of a �100 ms activation lag be-

tween posterior visual areas and the fronto-parietal ignition.18

Our results reveal a latency lag within the visual system

proper—i.e., between early and high-order face-selective re-

gions—but only a minimal latency lag (�20ms) between high-or-

der face-selective cortex and the fronto-parietal response

(Figure 1C), also compatible with our previous results from

large-scale intracranial recordings.36

As for IIT predictions, our results appear to be compatible at

the qualitative level with their prediction of significant and persis-

tent inter-temporal decoding in the visual cortex. However, it

should be noted that IIT is still a theory that is widely debated

in the field,37 and the persistent effects we find are predicted

also by non-IIT hypotheses.19 Furthermore, the IIT formalism

may not correspond in a straightforward manner to the similarity

structure of sensory representations.38

Finally, it should be noted that our finding of a temporally sta-

ble neuronal code does not necessarily refute the theoretical

possibility that cognitive and neuronal states may fail to corre-

spond to each other over time.39

Possible roles for high neuronal activations
The present findings raise the question of the role of the early,

transiently high neuronal activation levels, which are a common

observation in visual responses and a consistent signature of

crossing the conscious perceptual threshold.4,40–42 At present,

the function of these high activity bursts remains an open ques-

tion—however, there are a number of attractive possibilities,

such as the recent proposal19 of a binding mechanism essential

for establishing population and relational coding. Additional
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potential functions of the initial high firing could be its rapid

spread to down-stream cortical areas and its registration in

working memory and long-term memory and in rapid motor ac-

tions. Clearly, future studies are needed to resolve all these

fundamental questions.

Conclusions
To summarize, our findings provide a plausible experimental res-

olution of a fundamental conundrum in perceptual neuroscience:

how do we maintain stable perceptual states given the transient

nature of neuronal activation magnitude? Our results suggest

that this problem is solved through relational coding. Rather

than relying solely on the overall magnitude of the response,

perception is coded via the relative activation of different

neurons and their overall population patterns. Together with

recent conceptual advances emphasizing such coding mecha-

nisms,19,43,44 these findings support a temporal stability aspect

of relational coding in human cognitive neuroscience.

Limitations of the study
The central limitation of the study is the relatively sparse sampling

of frontal cortical regions that were available. This limitation,

due to the strictly clinical criteria applied in the targeting of

recording sites, prevented us from achieving a conclusive anal-

ysis regarding the representation of sustained visual information

in frontal areas. Another limitation, again inherent in the clinical

setting, was the limited time available for experimental testing, re-

sulting in the single-task nature of the experiment. This was

particularly problematic for achieving thorough mapping of

frontal representations, which are likely to be strongly task

dependent.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Intracranial recordings were obtained from 13 patients (10 females, mean age 34.7 ± 9.6), monitored for pre-surgical evaluation of

epileptic foci due to pharmacologically resistant epilepsy, at the North Shore University Hospital in NY. As part of the clinical assess-

ment, all patients were implanted with subdural or depth contacts (see Table S1 for individual demographic and electrode coverage

details). The study was conducted in accordance with the latest version of the Declaration of Helsinki, and all patients provided a fully

informed consent to participate, including consent to publish the results, according to the US National Institute of Health guidelines,

monitored by the institutional review board at the Feinstein Institute for Medical Research. No epileptic clinical seizures occurred

during the experiment.
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METHOD DETAILS

Experimental task and stimuli
The participants viewed images of famous faces and places, as part of a longer study that included a later phase of free recall of the

images that were presented.13,31 The experiment was divided into two runs. Each run began with a 200 s resting-state period with

eyes closed (the first two patients performed the resting-state task on a different day). Immediately afterward, 14 different images of

well-known faces and places were presented to the participants (7 pictures from each category). In total, 28 different naturalistic and

colorful stimuli were included in the experiment, 14 in each run. Due to copyright restrictions, examples of the stimuli presented in

Figures 1A and 2, as well as in the graphical abstract, are accurate color illustrations of original stimuli exemplars, drawn by a graph-

ical artist (https://www.fiverr.com/valentinagulina?source=gig_page), and acquired via the Fiverr platform (https://www.fiverr.com).

These illustrations were purchased by and are now the property of the Weizmann Institute of Science.

Each image was presented for 1500ms, with 750ms inter-stimulus intervals (ISIs) between them, during which a fixation cross was

presented (see Figure 1A for task depiction). Single items were repeated four times each, in a pseudo-random order such that no

image was repeated twice consecutively. The stimuli were presented on an LCD screen, using Presentation software (Version

0.70, www.neurobs.com), at a �60 cm viewing distance (image size was 16.5� 3 12.7). The participants were asked to carefully

view these images and try to remember them as well as possible, including details regarding unique colors, facial expressions,

perspective, lightning, etc. They were informed that after the viewing phase, they will be asked to recall the pictures they saw,

and to specifically describe their prominent visual features, not just simply name them. This was done to ensure that they focused

on visual information that was specific to the presented images, and not just their semantic details. All participants performed the

task with a high success rate, with an average of 8.8 ± 2.7(SD) remembered items per run. No participants were excluded from

the analysis based on their performance levels. For more details, see Norman et al..13,31

Contacts implant and data acquisition
All recordings were conducted at the Northshore University Hospital, Manhasset, NY, USA, at the patients’ quiet bedside. Contacts

were either subdural grids or strips, placed directly on the cortical surface, or depth electrodes (Ad-Tech, Racine, WI, Integra, Plains-

boro, NJ, and PMT Corporation, Chanhassen, MN). Subdural contacts were either 1 or 3 mm in diameter, with inter-contact spacing

of either 4 or 10 mm. In depth contacts were 2 mm platinum cylinders, with 4.4 mm inter-contact spacing, and a diameter of 0.8 mm.

The intracranial signals were referenced to a vertex screw or to a subdermal electrode, and were electronically filtered between 0.1

and 200 Hz, and then sampled at a rate of 500 or 512 Hz. The data was stored for offline analysis using XLTEK EMU128FS or

NeuroLink IP 256 systems (Natus Medical Inc., San Carlos, CA). Stimulus-triggered electrical pulses were sent upon stimuli onsets

and recorded along with the iEEG data for precise alignment of task protocol to neural activity.

Anatomical localization of the contacts
Before the electrode implantation, the patients underwent a T1 weighted 1 mm isometric anatomical MRI scan using a 3T Signa HDx

scanner (GE Healthcare, Chicago, Illinois). Following the implant, a computed tomography (CT) and a T1-weighted anatomical MRI

scan on a 1.5-T Signa Excite scanner (GE Healthcare) were acquired, in order to enable precise localizations of each contact. All

scans were skull-stripped using FSL’s BET algorithm, and the post-implant CT was first co-registered to the post-implantation

MRI scan, and then to the pre-implantation MRI anatomical scan, using rigid affine transformation, as implemented in FSL’s

Flirt.47,53,54 Concatenation of these two co-registrations allowed visualization of the post-implant CT scan on top of the preoperative

MRI scan, while minimizing potential errors due to possible surgery and implantation brain shifts. Individual contacts were next iden-

tified by manual inspection of the co-registered CT and post-implant MRI, and marked in each patient’s preoperative MRI native

space, using the BioImage Suite.46 Next, electrode projection onto the cortical surface was performed as in the followingmanner8,13:

First, individual patients’ cortical surfaces were segmented and reconstructed from the pre-implant structural MRI, using FreeSurfer

6.0.48 Then, each contact was allocated to the nearest vertex on the individual’s cortical surface. Contacts that were farther than 8mm

from the cortical surface were excluded from further analyses. In order to project all contacts from all patients onto a single template

cortical surface, while maintaining their specific relations to individual gyri and sulci, the 3-D cortical mesh of each individual was

resampled and standardized using SUMA,49 allowing visualization of all contacts on a single common cortical template

(FreeSurfer’s FSaverage). Finally, colored labels on the cortical surface, as shown in Figure 1B, were derived from different sur-

face-based anatomical atlases available in FreeSurfer,55–57 including a probabilistic visual-retionotopic atlas.58

iEEG data preprocessing and HFB estimation
All data analysis was performed in MATLAB (MathWorks), using EEGLAB,45 Chronux,50 DRtoolbox,51 MES toolbox,52 and in-house

developed code. Raw iEEG time-courses were inspected manually and statistically to detect noisy/corrupted channels, which were

then excluded from further analysis. Signals that were recorded at a sampling rate of 512 Hz were downsampled to 500 Hz, for con-

sistency. The 60 Hz power line interference, as well as its harmonics, were removed using zero-lag linear-phase Hamming-windowed

FIR band-stop filters. Next, all contacts were re-referenced to a robust common average (excluding the corrupted channels).

The high-frequency broadband (HFB) signal was defined as the mean normalized power of frequencies between 60 and 160 Hz

(High-gamma), the range of frequencies that is commonly used as the electrophysiological marker of neural population
Cell Reports 42, 112614, June 27, 2023 15

https://www.fiverr.com/valentinagulina?source=gig_page
https://www.fiverr.com
http://www.neurobs.com


Article
ll

OPEN ACCESS
activity.13,31–34,59 HFB power was computed by filtering the signal into 20 Hz bands between 60 and 160 Hz, employing zero-lag

linear-phase Hamming window FIR filters, using EEGLAB. Next, the momentary amplitude in each sub-range was calculated as

the absolute value of the filtered signal’s Hilbert transform.4,13,24,36 Since the 1/f profile of the signal’s power spectrum results in larger

values of lower frequencies, we normalized each sub-range by dividing it with its mean value. Finally, we averaged the normalized

values across all sub-ranges. The resulting HFB data was inspected for transient electrical artifacts, defined as signals above 5 SD in

the common average signal (the averaged time-series across all electrodes). Time windows of 200ms around these peaks were

removed from further analyses.

The HFB data was then epoched relative to stimulus onset (�550 to 2250 post stimulus onset). In order to normalize the data to

account for differences in overall HFB amplitude levels in different contacts, event-related HFB responses to visual stimulation were

normalized relative to a baseline period of�400 to�100 ms prior to stimuli onset, by dividing each time point in the epoched data by

the mean baseline amplitude. Finally, since the HFB amplitude tends to follow a log-normal distribution, as do many other measures

of population firing rate, the HFB values were log-transformed by 10*log10.13,31

Definition and grouping of visually responsive contacts
Visually-responsive contacts were identified by comparing the post-stimulus HFB response of each contact (averaged across the

time window of 100 to 500ms post stimulus onset) to its pre-stimulus baseline (averaged from �400 to �100ms prior to stimulus

onset), using a two-tailed Wilcoxon signed-rank test. All contact p values (from all patients) were pooled together to control for

the false discovery rate (FDR).60 Visually responsive contacts were defined as those that displayed a significant HFB response

(pfdr<0.05). Next, we grouped together visually responsive contacts based on their anatomical, functional, and response latency fea-

tures, to the following subsets: early visual (V1/V2), face-selective, content-selective, and fronto-parietal visual contacts.

In order to calculate the response latency of each visually responsive contact, we compared the HFB amplitude in each post-stim-

ulus time point to the pre-stimulus baseline, using a paired t test. Response latency was defined as the first time point in which the

HFB amplitude was significantly higher than baseline (p < 0.05), and remained significant for the next 50 ms at least.61 Previous sin-

gle-unit studies in monkeys reported a maximal response latency of �180ms in early visual regions V1 and V2.62 Thus, we defined

early visual contacts (n = 32, marked in blue in Figure 1B) as the visually-responsive contacts that showed a response latency of

180ms or less, and were located in Brodmann areas 17 and 18 (V1 and V2), as based on the Brodmann atlas implemented in

FreeSurfer.56

To define face-selective contacts, the mean HFB responses across the 100-500ms time window post-stimulus onset, were

compared between faces and places using a Wilcoxon rank-sum test. Contacts that showed significantly higher activation in

response to faces than places (pfdr<0.05), and were anatomically located beyond early visual regions, excluding frontal cortex,

were defined as face-selective contacts (n = 43, denoted in red and orange in Figure 1B).

An additional set of visual contacts was termed content-selective contacts, and included contacts that showed preferential re-

sponses to specific stimuli exemplars as compared to others; importantly, these were not necessarily only face or place selective

(based on13). In order to define these contacts, we inspected the visually-responsive contacts located in 6 anatomical regions across

the ventral visual hierarchy, based on the Desikan Killiany atlas,55 including the lateral occipital cortex (LO), inferior temporal gyrus

(ITG), lingual gyrus, parahippocampal gyrus (PHG), fusiform gyrus, and entorhinal gyrus, excluding the early-visual contacts that were

already defined. Visually responsive contacts that were located in these ROIs, and showed significant content-selectivity in their re-

sponses, defined as a difference of at least 3.5 SD between the top 10 preferred images and bottom 10 images, were included in the

content-selective contact set (n = 114, shown in yellow and orange in Figure 1B). Notice 27 contacts fitted the criteria for both the

face-selective group and the content-selective groups, depicted in orange in Figure 1B.

Finally, in order to examine the activity patterns in prefrontal and parietal regions, we defined a fronto-parietal anatomical ROI

based on the Desikan Killiany atlas labels, that included the superior frontal gyrus, rostral middle frontal gyrus, pars orbitalis, pars

triangularis, pars opercularis, precentral gyrus, postcentral gyrus, supramarginal gyrus, orbital frontal gyrus, and the anterior cingu-

late. All visually-responsive contacts that were located within these regions were included in the fronto-parietal visual group (n = 63,

shown in green in Figure 1B).

Additional visually-responsive contacts that did not fall under one of the above visually-selective subgroups were labeled ‘‘other

visually-responsive contacts’’, and are shown in white in Figure 1B; non-visual contacts are marked in gray.

QUANTIFICATION AND STATISTICAL ANALYSIS

Examining inter-temporal stability
To quantify the stability of the three main coding parameters in this study-activity pattern stability, relational geometry (as reflected in

the representational similarity distances) and relational coding stability, we correlated these measures across all pairs of time bins, in

what we termed inter-temporal correlations between all time points. This generated temporal, time-by-time matrices, containing the

similarities between these different features across the trial durations. The specific details of these analyses, for each type of coding

measure, are detailed in separate sections below.
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Population activity patterns’ inter-temporal stability
In order to quantify the stability of the profiles of stimuli-evoked population activity patterns across time, we calculated the correlation

based distances of these patterns between all time points. First, we split the HFB data into epochs relative to stimuli onset, including

the 550ms pre-stimulus fixation, 1500ms stimulus presentation duration, and the 750ms post-stimulus fixation period (resulting in

2800ms long epochs). Each stimulus (n = 28) was presented 4 times, thus we had 112 such epochs in total per contact (28 stimuli*4

repetitions). Next, we down sampled the data by averaging it across time in 100ms non-overlapping timewindows, hence resulting in

28 time bins per trial (or epoch). Then, for each contact subset (see ‘‘definition and grouping of visually responsive contacts’’ above),

we arranged the data into a 3Dmatrix per each stimulus, resulting in 28matrices depicting the activity patterns, of the following form:

A n contacts 3 28 time bins 3 4 repetitions. Examples of such activity patterns (for the content-selective contact group), for time bin 0.3s post-

stimulus onset, are shown for four different stimuli in Figure 2 (activity patterns were averaged across the 4 stimulus repetitions in

this figure).

For every Ai matrix (i = 1,2. 28 stimuli), we correlated the contact activity pattern vectors between all time-bin combinations, so

that for each specific time bin we obtained the Pearson’s r correlation values between the population patterns of all other time bins. In

order to avoid auto-correlations and possible noise artifacts, the correlations were calculated in a leave-1-out procedure across the 4

stimulus repetitions, in the following manner: The correlation values for each time-bin pair were calculated 4 times, so that in every

iteration we extracted one trial and averaged the pattern activity across the remaining 3 trials, and then correlated between the aver-

aged pattern and the single-trial pattern. We then proceeded to calculate the average correlation value across these 4 iterations. Dis-

tances were defined as 1-Pearson’s r. Thus, we obtained 28 inter-temporal distance matrices (for each of the 28 stimuli), of the

following form: D28 time bins 3 28 time bins. Finally, we averaged across the individual stimuli D matrices, resulting in a single averaged

inter-temporal distances matrix, shown in Figure 3A (and in Figure 6- denoted as the ‘‘Pattern Stability’’ matrices).

In order to assess the statistical significance of the inter-temporal pattern correlation/distance values, we shuffled the contact la-

bels in the original data 1,000 times, and then proceeded to recompute the correlations in the same manner as described above,

resulting in a shuffled 1,000 r-values distribution for each ith time bin vs. jth time bin entry. p-values were calculated as the proportion

of correlation-based distance (1-r) values derived from the shuffled permutations that were smaller than the original distance value

derived from the data (smaller d values indicate higher similarity). An FDR correction60 was then applied on the resultant 784 p values

(28 3 28 time-bin pairs), to control for a 0.5% false discovery rate across all time-bin comparisons (pFDR = 0.005). In addition, we

assessed the maximal cluster size in each shuffled iteration (using a cluster-defining threshold of p = 0.05). FWE-corrected p values

were computed as the proportion of random clusters larger than or equal to the clusters observed in the actual data.63–65 The dis-

tance values that survived the combined FDR and cluster-based corrections were marked as significant in the inter-temporal pattern

stability matrices.

RDM computation and across-time stability analysis
In order to compute the stimuli pairwise distances matrix, i.e. the representational dissimilarity matrix (RDM), we first

arranged the HFB epoched data, for each contact group separately, in neuronal stimulus representation matrices B, in the

form of B n contacts 3 28 stimuli 3 4 repetitions per stimulus, with a separate Bi (1 = 1,2 . 28) matrix for each time bin. The pairwise

distance between the neural response patterns of two exemplars was calculated as 1-Pearson’s r, depicting the correlation be-

tween the activity pattern vectors of two stimuli. Distances were calculated between all possible stimuli pairs, separately for each

Bimatrix. The correlations were calculated in a leave-1-out manner to avoid autocorrelations and artifacts, as explained in the

previous section (population activity patterns’ inter-temporal stability), iterating across the 4 possible combinations of a single

trial vs. 3-trials averaged activity vector, and deriving four correlation values for each stimuli pair, that were saved in separate

RDMs. Thus, we obtained a total of 112 RDMs depicting the distances between all possible stimuli pairs, each in the form of

R28 stimuli 3 28 stimuli, one for each of the four leave-1-out iterations, and for each time bin separately (n = 28).

In order to determine the stability of the RDMs across-time, as an indication to the stability of the stimuli representational geometry,

we next examined the inter-temporal correlations of these RDMs. We first ‘‘unrolled’’ the top and bottom triangular halves of each

RDM (including the main diagonal) into vectors, and averaged across them. This resulted in a vector of 406 distance values

(N � ðN � 1Þ=2 + N), depicting the distances between all stimuli pairs, including the distances between different presentations of

the same stimulus (N = 28, denoting the number of stimuli). These pairwise distance vectors were obtained for each time bin, and

for each of the four leave-1-out iterations. Next, we correlated these distance vectors between all possible time-bin pairs, again in

a leave-1-out-manner, resulting in a 28 time bins 3 28 time bins 3 4 leave-1-out iterations matrix, which we then averaged across

the third dimension. This resulted in a 28 3 28 distances matrix, depicting the inter-temporal stability of the RDM, or stimuli repre-

sentational geometric space (as shown in Figure 3C, and in Figure 6- the matrices termed ‘‘RDM stability’’). Statistical significance

was assessed through 1,000 shuffled permutations, using FDR and cluster-based corrections, in the same manner as described

above in ‘‘population activity patterns’ inter-temporal stability’’.

Inter-temporal stability of relational coding
The relational code of a stimuluswasdefined as the vector of pattern distances from that specific stimulus to all other stimuli. In order to

examine the across-time stability of these relational codes, we first extracted RDMs for each time bin separately, as described in the

section above (see RDM computation and across-time stability analysis). Every row in these RDMs consists of a distances vector,
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denoteddi (i = 1,2.28stimuli) that holds the relational code for a specific stimulus-i.e. thedistancesbetweenonestimulus andall other

stimuli, for a specific timebin.Next,wecalculated theacross-timecorrelations for everydi vector separately, ina leave-1-outmanner, as

described in the two sections above. This resulted in 3D distance matrices of size 28 time bins 3 28 time bins 3 4 leave-1-out combinations

which were averaged across the third dimension, resulting in a 28 time bins 3 28 time bins mean distances matrix for each individual

stimulus. Lastly, we averaged across the 28 individual-stimulus distances matrices, resulting in the final grand average 28 time bins 3

28 time bins distances matrix, that reflected the average across-stimuli stability of the relational coding across trial duration (e.g. in Fig-

ure 4C). This was done separately for every contact group. Statistical significance was assessed through 1,000 shuffled permutations,

using FDR and cluster-based corrections, in the same manner as described in the two sections above.

Signal-to-noise analyses
Signal to noise ratio (SNR) was calculated as the average HFB signal across all trials and stimuli, divided by the standard deviation

computed across repetitions of the same stimulus, and averaged across all stimuli. It was then averaged across all contacts, sepa-

rately for each ROI. Examining the SNR time course revealed that earlier time points in the trial, immediately following stimulus onset,

displayed higher SNR levels. In order to explore how higher SNR levels can potentially contribute to the increased correlation values

we obtained in these time points, we rerun the stimulus relational coding analyses pipeline twice, as described above, but using

different SNR levels of the data. This was done by running the analysis once with averaging across individual repetitions of the

same stimulus before calculating the correlations (in the leave-1-out manner as described above for the RDM computation, and

then by averaging across pairs of RDMs before calculating their inter-temporal correlations); and once without averaging-i.e. calcu-

lating correlations between single trials, and only then averaging across the correlation values derived from the different single-trial

combinations. Since averaging across trials increases the SNR, in this manner we could highlight the effects of higher SNR levels,

which led to higher correlation levels in the relational coding stability analysis.

Stability (across-time ratio comparison) analysis
In order to quantify and compare the stability of the different coding mechanisms across time, we calculated the ratio between the

parameter values measured early in the trial, at time 0.2s after stimulus onset, as compared to the same parameter measured at time

point 1.2s after onset, for the content-selective contacts set. Perfect stability will yield a ratio of 1, while signal-information decay with

time will lead to values larger than 1. Specifically, response amplitude stability was calculated as the individual stimuli responses at

time 0.2, averaged across all electrodes and repetitions of each individual stimulus, divided by the mean responses at time 1.2s. Fig-

ure 5 presents the individual ratio values for each stimulus, as well as the average ratio across all stimuli. For the population pattern

ratio calculation, we extracted the correlation time course of the population pattern at time 1.5s with the patterns from all other time

bins (see population activity patterns’ inter-temporal stability in STAR Methods and Figure 3B), separately for each stimulus, aver-

aging the correlation time-courses across the four leave-1-out iterations based on the multiple stimulus repetitions. Stability was

calculated as the ratio between the correlation with time bin 0.2s, divided by the correlation at time 1.2s. The individual-stimuli cor-

relation ratios, as well as the across-stimuli average, are presented in Figure 5. Relational code stability was similarly calculated

based on the correlation time-courses of the relational code vectors at time 1.5 with all other time bins (see inter-temporal stability

of relational coding in STAR Methods and Figure 4D), separately for each stimulus, after averaging across the four leave-1-out iter-

ations. Stability was calculated as detailed above for the population patterns.

The correlation time course with time point 1.5s was selected as the reference for the population pattern and relational code

correlations, due to the transiently changing SNR levels, which were shown to significantly influence correlation levels, and were sta-

bilized toward the end of the trials (see dynamics and effects of signal to noise levels and Figure S1). Statistical testing comparing the

three stability measurements was performed using Welch’s ANOVA, followed by post-hoc Bonferroni tests.

Single-exemplar and category decoding across-time
To test whether information regarding the identity of single exemplars, as well as the category of the stimulus, is sustained across

time, we trained and tested inter-temporal exemplar and category decoders, separately for each contact group that we defined. First,

we applied pattern dimensionality reduction (PCA) to the data, in order to reduce feature number before training the decoders.13,51

This was done by averaging the epoched HFB data across the trial durations, and then across individual stimuli repetitions, con-

structing a mean feature matrix of the visual responses to all stimuli (28exemplars 3 n contacts), and then applying the PCA algorithm

on this matrix. In order to determine the optimal number of PCs to retain, we estimated the true dimensionality of the data (i.e. the

intrinsic dimension) using a Maximum Likelihood Estimation (MLE) algorithm.66 We proceeded to maintain the first 12 PCs, that ac-

counted for 89.2% of the variance in the data for the content-selective contact group. Next, we applied the linear transformation ob-

tained from the PCA to the original data (using an out-of-sample extension of the PCA), resulting in a 12-dimensional linear space,

which was arranged in a grand four-dimensional matrix G of the form: 12PCs 3 28time bins328exemplars34repetitions per exemplar. Thus,

entry Gi,j,k,l refers to the response level of the ith PC, at the jth time bin (100ms bins), for the kth exemplar and the lth repetition trial

of that exemplar.

In order to train the inter-temporal single-exemplar decoders, we applied a simple template matching decoding technique, in the

following manner: We looped over all individual time bins in two nested loops, in order to train and test every possible combination of

training a decoder on time binm, and testing it on time bin n, for a total of 282 = 784 time-bin combinations. For each unique training
18 Cell Reports 42, 112614, June 27, 2023
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vs. testing time-bin combination, we ran 1,000 decoding iterations. In each iteration, we randomly chose a single trial for each exem-

plar, extracted the response it elicited at time bin n from all PCs, and assigned it to a test pattern 2Dmatrix T (28exemplars3 12PCs). The

responses at time binmwere averaged across the remaining 3 trials for each exemplar, and assigned to a ref. 2DmatrixR (28exemplars

3 12PCs). Thus, every decoding iteration for training time pointm vs. testing time point n began with a 2D test matrix Tn and reference,

or training, 2DmatrixRm: row i in matrix Tn is the vector of responses of all PCs to the randomly chosen single trial of the ith exemplar at

time n; row i in matrix Rm is the vector of averaged responses across the remaining 3 trials from all PCs, at timem, to the ith exemplar.

Next, we assigned 28 decoded labels based on the maximal correlation value between each row in the test and reference matrices:

on every decoding step, the correlations between all rows ofmatrix Tn and all rows ofmatrixRmwere obtained, and themaximal value

was detected. The label of the corresponding row in the referencematrix (e.g. ‘‘Face 1’’) was then assigned to the rowwith the highest

correlation to it from the test matrix. The assigned pair of test-reference rows were then excluded from subsequent steps in the

current decoding iteration, such that every reference and test rows were assigned only once per iteration. Then, the next highest cor-

relation value between the Tn and Rm rows was detected, and so on. After assigning all test-reference row pairs, the number of

correctly assigned stimuli labels was recorded for that iteration. One thousand decoding iterations were performed for every training

time binm and testing time bin n combination, and the decoding accuracy for a specificm vs. n time bin combination was defined as

the mean percentage of accurately decoded single exemplars across the 1,000 iterations. This resulted in a decoding accuracy ma-

trix of size 28training time bins3 28testing time bins in which each entry held the decoding accuracy for that specific training vs. testing time

bins pair.

In order to obtain inter-temporal category decoding, we trained a k-nearest neighbors (k-NN) decoder (using k = 1) on the PCA

transformed data, iterating through all possible training vs. testing time bin combinations, similarly to the procedure in the single-

exemplar decoding, described above. Classification accuracy was obtained via a leave-1-out validation method. Thus, for every

training time bin m and testing time bin n (m,n = 1,2 . 28) combination, we trained the k-NN decoder on the category labels of

111 trials at time m, and tested its performance on the remaining trial at time n (28 different exemplars 3 4 repetitions each = 112

trials in total). Category classification accuracy was defined as the percent of correctly decoded iterations, for every m vs. n time

bins combination. This resulted in a 28training time bins 3 28testing time bins matrix, similarly to the exemplar decoding matrix, in which

each entry detained the category decoding accuracy level for that specific training vs. testing time bins pair.

Statistical significance for the decoding analyses were assessed through random-shuffling of the item labels (single-exemplars/

category labels, in accordance), across 1,000 permutations. In each shuffled permutation, the classifier accuracy scores we re-

computed, as described above. p-values for each entry in the inter-temporal decoding accuracy matrices were defined as the

proportion of shuffled accuracy scores larger than the actual classifier score. Correction for multiple comparisons was achieved

via combined FDR correction (p = 0.005) and cluster-size based correction (as detailed above in population activity patterns’ in-

ter-temporal stability).
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